ﻻ يوجد ملخص باللغة العربية
The iconic Schrodingers cat state describes a system that may be in a superposition of two macroscopically distinct states, for example two clearly separated oscillator coherent states. Quite apart from their role in understanding the quantum classical boundary, such states have been suggested as offering a quantum advantage for quantum metrology, quantum communication and quantum computation. As is well known these applications have to face the difficulty that the irreversible interaction with an environment causes the superposition to rapidly evolve to a mixture of the component states in the case that the environment is not monitored. Here we show that by engineering the interaction with the environment there exists a large class of systems that can evolve irreversibly to a cat state. To be precise we show that it is possible to engineer an irreversible process so that the steady state is close to a pure Schrodingers cat state by using double well systems and an environment comprising two-photon (or phonon) absorbers. We also show that it should be possible to prolong the lifetime of a Schrodingers cat state exposed to the destructive effects of a conventional single-photon decohering environment. Our protocol should make it easier to prepare and maintain Schrodinger cat states which would be useful in applications of quantum metrology and information processing as well as being of interest to those probing the quantum to classical transition.
Quantum optomechanics exploits radiation pressure effects inside optical cavities. It can be used to generate quantum states of the center-of-mass motion of massive mechanical objects, thereby opening up a new parameter regime for macroscopic quantum
We outline a toolbox comprised of passive optical elements, single photon detection and superpositions of coherent states (Schrodinger cat states). Such a toolbox is a powerful collection of primitives for quantum information processing tasks. We ill
A common-sense perception of a physical system is that it is inseparable from its physical properties. The notion of Quantum Cheshire Cat challenges this, as far as quantum systems are concerned. It shows that a quantum system can be decoupled from i
Superconducting quantum interference devices (SQUIDs) are among the most sensitive detectors for out-of-plane magnetic field components. However, due to their periodic response with short modulation period $M = 1 Phi_0$, determined by the magnetic fl
In addition to being a very interesting quantum phenomenon, Schrodinger cat swapping has the potential for application in the preparation of quantum states that could be used in metrology and other quantum processing. We study in detail the effects o