ترغب بنشر مسار تعليمي؟ اضغط هنا

The SMARTS Multi-epoch Optical Spectroscopy Atlas (SAMOSA): Using Emission Line Variability to Probe the Location of the Blazar Gamma-emitting Region

48   0   0.0 ( 0 )
 نشر من قبل Jedidah Isler
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jedidah C. Isler




اسأل ChatGPT حول البحث

We present multi-epoch optical spectroscopy of seven southern Fermi-monitored blazars from 2008 - 2013 using the Small and Medium Aperture Research Telescope System (SMARTS), with supplemental spectroscopy and polarization data from the Steward Observatory. We find that the emission lines are much less variable than the continuum; 4 of 7 blazars had no detectable emission line variability over the 5 years. This is consistent with photoionization primarily by an accretion disk, allowing us to use the lines as a probe of disk activity. Comparing optical emission line flux with Fermi $gamma$-ray flux and optical polarized flux, we investigate whether relativistic jet variability is related to the accretion flow. In general, we see no such dependence, suggesting the jet variability is likely caused by internal processes like turbulence or shock acceleration rather than a variable accretion rate. However, three sources showed statistically significant emission line flares in close temporal proximity to very large Fermi $gamma$-ray flares. While we do not have sufficient emission line data to quantitatively assess their correlation with the $gamma$-ray flux, it appears that in some cases, the jet might provide additional photoionizing flux to the broad line region, which implies some gamma-rays are produced within the broad line region, at least for these large flares.

قيم البحث

اقرأ أيضاً

The quasar 3C454.3 underwent a uniquely-structured multi-frequency outburst in June 2016. The blazar was observed in the optical $R$ band by several ground-based telescopes in photometric and polarimetric modes, at $gamma$-ray frequencies by the emph {Fermi} Large Area Telescope, and at 43 GHz with the Very Long Baseline Array. The maximum flux density was observed on 2016 June 24 at both optical and $gamma$-ray frequencies, reaching $S^mathrm{max}_mathrm{opt}=18.91pm0.08$ mJy and $S_gamma^mathrm{max} =22.20pm0.18times10^{-6}$ ph cm$^{-2}$ s$^{-1}$, respectively. The June 2016 outburst possessed a precipitous decay at both $gamma$-ray and optical frequencies, with the source decreasing in flux density by a factor of 4 over a 24-hour period in $R$ band. Intraday variability was observed throughout the outburst, with flux density changes between 1 and 5 mJy over the course of a night. The precipitous decay featured statistically significant quasi-periodic micro-variability oscillations with an amplitude of $sim 2$-$3%$ about the mean trend and a characteristic period of 36 minutes. The optical degree of polarization jumped from $sim3%$ to nearly 20% during the outburst, while the position angle varied by $sim120degr$. A knot was ejected from the 43 GHz core on 2016 Feb 25, moving at an apparent speed $v_mathrm{app}=20.3cpm0.8c$. From the observed minimum timescale of variability $tau_mathrm{opt}^mathrm{min}approx2$ hr and derived Doppler factor $delta=22.6$, we find a size of the emission region $rlesssim2.6times10^{15}$ cm. If the quasi-periodic micro-variability oscillations are caused by periodic variations of the Doppler factor of emission from a turbulent vortex, we derive a rotational speed of the vortex $sim0.2c$.
101 - W. Max-Moerbeck 2013
Blazars are powerful, variable emitters from radio to gamma-ray wavelengths. Even though the general picture of synchrotron emission at low energies and inverse Compton at the high energy end is well established, many important aspects of these remar kable objects are still not well understood. For example, even the location of the gamma-ray emission region is still not clearly established, with some theories locating it close to the black hole/accretion disk while others place it at parsec scales in the radio jet. Since mid-2007 we have carried out a large scale monitoring program at 15 GHz using the OVRO 40 m telescope. We are currently observing about 1700 blazars twice per week. The sample includes all the Fermi-LAT detected blazars north of declination -20 degrees. Here, we study the existence of correlated variability between these two bands for 86 sources bright enough to be detected weekly by LAT. The existence of correlated variability can be interpreted as an indication of a related spatial locations for the radio and gamma-ray emission, making the evaluation of its statistical significance a key goal of our program. A study of the statistical significance of these cross-correlations is presented along with a discussion of the Monte Carlo simulations used to evaluate them. More information about the conditions on the radio emission zone can be obtained through polarization monitoring which tells us about the configuration of the magnetic fields in this region. To study radio polarization variability we are building KuPol, a radio polarization receiver for the 12 to 18 GHz band that will replace the current total power receiver at the OVRO 40 meter telescope.
We present the observational results of the Gamma-ray blazar, 3C 66A, at 2.3, 8.4, and 22 GHz at 4 epochs during 2004-05 with the VLBA. The resulting images show an overall core-jet structure extending roughly to the south with two intermediate break s occurring in the region near the core. By model-fitting to the visibility data, the northmost component, which is also the brightest, is identified as the core according to its relatively flat spectrum and its compactness. As combined with some previous results to investigate the proper motions of the jet components, it is found the kinematics of 3C 66A is quite complicated with components of inward and outward, subluminal and superluminal motions all detected in the radio structure. The superluminal motions indicate strong Doppler boosting exists in the jet. The apparent inward motions of the innermost components last for at least 10 years and could not be caused by new-born components. The possible reason could be non-stationarity of the core due to opacity change.
The $gamma$-ray production mechanism and its localization in blazars are still a matter of debate. The main goal of this paper is to constrain the location of the high-energy emission in the blazar TXS 2013+370 and to study the physical and geometric al properties of the inner jet region on sub-pc scales. VLBI observations at 86 GHz and space-VLBI at 22 GHz allowed us to image the jet base with an angular resolution of $sim$0.4 pc. By employing CLEAN imaging and Gaussian model-fitting, we performed a thorough kinematic analysis, which provided estimates of the jet speed, orientation, and component ejection times. Additionally, we studied the jet expansion profile and used the information on the jet geometry to estimate the location of the jet apex. VLBI data were combined with single-dish measurements to search for correlated activity between the radio and $gamma$-ray emission. The high-resolution VLBI imaging revealed the existence of a spatially bent jet, described by moving and stationary features. New jet features are observed to emerge from the core, accompanied by flaring activity in radio bands and $gamma$ rays. The analysis of the transverse jet width profile constrains the location of the mm core to lie $leq$ 2 pc downstream of the jet apex, and also reveals the existence of a transition from parabolic to conical jet expansion at a distance of $sim$54 pc from the core, corresponding to $sim$1.5$times$10$^{rm 6}$ Schwarzschild radii. The cross-correlation analysis reveals a strong correlation between the radio and $gamma$-ray data, with the 1 mm emission lagging $sim$49 days behind the $gamma$ rays. Based on this, we infer that the high energy emission is produced at a distance of $sim$1 pc from the VLBI core, suggesting that the seed photon fields for the external Compton mechanism originate either in the dusty torus or in the broad-line region.
We analyze X-ray light curves of the blazar Mrk 421 obtained from the Soft X-ray Imaging Telescope and the Large Area X-Ray Proportional Counter instrument onboard the Indian space telescope $AstroSat$ and archival observations from $Swift$. We show that the X-ray power spectral density (PSD) is a piece-wise power-law with a break, i.e., the index becomes more negative below a characteristic break-timescale. Galactic black hole X-ray binaries and Seyfert galaxies exhibit a similar characteristic timescale in their X-ray variability that is proportional to their respective black hole mass. X-rays in these objects are produced in the accretion disk or corona. Hence, such a timescale is believed to be linked to the properties of the accretion flow. Any relation observed between events in the accretion disk and those in the jet can be used to characterize the disk-jet connection. However, evidence of such link have been scarce and indirect. Mrk 421 is a BL Lac object which has a prominent jet pointed towards us and a weak disk emission, and it is assumed that most of its X-rays are generated in the jet. Hence, existence of the break in its X-ray PSD may indicate that changes in the accretion disk, which may be the source of the break timescale are translating into the jet, where the X-rays are produced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا