ﻻ يوجد ملخص باللغة العربية
Topological insulators (TIs) containing 4f electrons have recently attracted intensive interests due to the possible interplay of their non-trivial topological properties and strong electronic correlations. YbB6 and SmB6 are the prototypical systems with such unusual properties, which may be tuned by external pressure to give rise to new emergent phenomena. Here, we report the first observation, through in-situ high pressure resistance, Hall, X-ray diffraction and X-ray absorption measurements, of two pressure-induced quantum phase transitions (QPTs) in YbB6. Our data revealthat the two insulating phases are separated by a metallic phase due to the pressure-driven valence change of Yb f-orbitals. In combination with previous studies, our results suggest that the two insulating states may be topologically different in nature and originate from the d-p and d-f hybridization, respectively. The tunable topological properties of YbB6 revealed in this study may shed light on the intriguing correlation between the topology and the 4f electrons from the perspective of pressure dependent studies.
A quantum critical point is approached by applying pressure in a number of magnetic metals. The observed dependence of Tc on pressure necessarily means that the magnetic energy is coupled to the lattice. A first order phase transition occurs if this
Recently, natural van der Waals heterostructures of (MnBi2Te4)m(Bi2Te3)n have been theoretically predicted and experimentally shown to host tunable magnetic properties and topologically nontrivial surface states. In this work, we systematically inves
Superconductivity and topological quantum states are two frontier fields of research in modern condensed matter physics. The realization of superconductivity in topological materials is highly desired, however, superconductivity in such materials is
ZrSiS has recently gained attention due to its unusual electronic properties: nearly perfect electron-hole compensation, large, anisotropic magneto-resistance, multiple Dirac nodes near the Fermi level, and an extremely large range of linear dispersi
Lacunar spinel GaTa$_4$Se$_8$ is a unique example of spin-orbit coupled Mott insulator described by molecular $j_{text{eff}}!=!3/2$ states. It becomes superconducting at T$_c$=5.8K under pressure without doping. In this work, we show, this pressure-i