ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure-induced superconductivity and topological quantum phase transitions in a quasi-one-dimensional topological insulator: Bi4I4

142   0   0.0 ( 0 )
 نشر من قبل Yanpeng Qi
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Superconductivity and topological quantum states are two frontier fields of research in modern condensed matter physics. The realization of superconductivity in topological materials is highly desired, however, superconductivity in such materials is typically limited to two- or three-dimensional materials and is far from being thoroughly investigated. In this work, we boost the electronic properties of the quasi-one-dimensional topological insulator bismuth iodide b{eta}-Bi4I4 by applying high pressure. Superconductivity is observed in b{eta}-Bi4I4 for pressures where the temperature dependence of the resistivity changes from a semiconducting-like behavior to that of a normal metal. The superconducting transition temperature Tc increases with applied pressure and reaches a maximum value of 6 K at 23 GPa, followed by a slow decrease. Our theoretical calculations suggest the presence of multiple pressure-induced topological quantum phase transitions as well as a structural-electronic instability.



قيم البحث

اقرأ أيضاً

Recently, natural van der Waals heterostructures of (MnBi2Te4)m(Bi2Te3)n have been theoretically predicted and experimentally shown to host tunable magnetic properties and topologically nontrivial surface states. In this work, we systematically inves tigate both the structural and electronic responses of MnBi2Te4 and MnBi4Te7 to external pressure. In addition to the suppression of antiferromagnetic order, MnBi2Te4 is found to undergo a metal-semiconductor-metal transition upon compression. The resistivity of MnBi4Te7 changes dramatically under high pressure and a non-monotonic evolution of r{ho}(T) is observed. The nontrivial topology is proved to persists before the structural phase transition observed in the high-pressure regime. We find that the bulk and surface states respond differently to pressure, which is consistent with the non-monotonic change of the resistivity. Interestingly, a pressure-induced amorphous state is observed in MnBi2Te4, while two high pressure phase transitions are revealed in MnBi4Te7. Our combined theoretical and experimental research establishes MnBi2Te4 and MnBi4Te7 as highly tunable magnetic topological insulators, in which phase transitions and new ground states emerge upon compression.
380 - E. J. Cheng , W. Xia , X. B. Shi 2019
Topological nodal-line semimetals (TNLSMs) are materials whose conduction and valence bands cross each other, meeting a topologically-protected closed loop rather than discrete points in the Brillouin zone (BZ). The anticipated properties for TNLSMs include drumhead-like nearly flat surface states, unique Landau energy levels, special collective modes, long-range Coulomb interactions, or the possibility of realizing high-temperature superconductivity. Recently, SrAs3 has been theoretically proposed and then experimentally confirmed to be a TNLSM. Here, we report high-pressure experiments on SrAs3, identifying a Lifshitz transition below 1 GPa and a superconducting transition accompanied by a structural phase transition above 20 GPa. A topological crystalline insulator (TCI) state is revealed by means of density functional theory (DFT) calculations on the emergent high-pressure phase. As the counterpart of topological insulators, TCIs possess metallic boundary states protected by crystal symmetry, rather than time reversal. In consideration of topological surface states (TSSs) and helical spin texture observed in the high-pressure state of SrAs3, the superconducting state may be induced in the surface states, and is most likely topologically nontrivial, making pressurized SrAs3 a strong candidate for topological superconductor.
Topological insulators (TIs) containing 4f electrons have recently attracted intensive interests due to the possible interplay of their non-trivial topological properties and strong electronic correlations. YbB6 and SmB6 are the prototypical systems with such unusual properties, which may be tuned by external pressure to give rise to new emergent phenomena. Here, we report the first observation, through in-situ high pressure resistance, Hall, X-ray diffraction and X-ray absorption measurements, of two pressure-induced quantum phase transitions (QPTs) in YbB6. Our data revealthat the two insulating phases are separated by a metallic phase due to the pressure-driven valence change of Yb f-orbitals. In combination with previous studies, our results suggest that the two insulating states may be topologically different in nature and originate from the d-p and d-f hybridization, respectively. The tunable topological properties of YbB6 revealed in this study may shed light on the intriguing correlation between the topology and the 4f electrons from the perspective of pressure dependent studies.
We report systematical studies of a new quasi-one-dimensional (1D) compound Ba3TiTe5 and the high-pressure induced superconductivity therein. Ba3TiTe5 was synthesized at high pressure and high temperature. It crystallizes into a hexagonal structure ( P63/mcm), which consists of infinite face-sharing octahedral TiTe6 chains and Te chains along the c axis, exhibiting a strong 1D characteristic structure. The first-principles calculations demonstrate that Ba3TiTe5 is a well-defined 1D conductor and thus, it can be considered a starting point to explore the exotic physics induced by pressure via enhancing the interchain hopping to move the 1D conductor to a high dimensional metal. For Ba3TiTe5, high-pressure techniques were employed to study the emerging physics dependent on interchain hopping, such as the Umklapp scattering effect, spin/charge density wave (SDW/CDW), superconductivity and non-Fermi Liquid behavior. Finally, a complete phase diagram was plotted. The superconductivity emerges from 8.8 GPa, near which the Umklapp gap is mostly suppressed. Tc is enhanced and reaches the maximum ~6 K at about 36.7 GPa, where the spin/charge density wave (SDW/CDW) is completely suppressed, and a non-Fermi Liquid behavior appears. Our results suggest that the appearance of superconductivity is associated with the fluctuation due to the suppression of Umklapp gap and the enhancement of Tc is related with the fluctuation of the SDW/CDW.
The recent-discovered Sr$_x$Bi$_2$Se$_3$ superconductor provides an alternative and ideal material base for investigating possible topological superconductivity. Here, we report that in Sr$_{0.065}$Bi$_{2}$Se$_3$, the ambient superconducting phase is gradually depressed upon the application of external pressure. At high pressure, a second superconducting phase emerges at above 6 GPa, with a maximum $T_c$ value of $sim$8.3 K. The joint investigations of the high-pressure synchrotron x-ray diffraction and electrical transport properties reveal that the re-emergence of superconductivity in Sr$_{0.065}$Bi$_{2}$Se$_3$ is closely related to the structural phase transition from ambient rhombohedral phase to high-pressure monoclinic phase around 6 GPa, and further to another high-pressure tetragonal phase above 25 GPa.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا