ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetries and defects in three-dimensional topological field theory

198   0   0.0 ( 0 )
 نشر من قبل Christoph Schweigert
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Boundary conditions and defects of any codimension are natural parts of any quantum field theory. Surface defects in three-dimensional topological field theories of Turaev-Reshetikhin type have applications to two-dimensional conformal field theories, in solid state physics and in quantum computing. We explain an obstruction to the existence of surface defects that takes values in a Witt group. We then turn to surface defects in Dijkgraaf-Witten theories and their construction in terms of relative bundles; this allows one to exhibit Brauer-Picard groups as symmetry groups of three-dimensional topological field theories.



قيم البحث

اقرأ أيضاً

70 - C. Schweigert , J. Fuchs 2000
The correlation functions of a two-dimensional rational conformal field theory, for an arbitrary number of bulk and boundary fields and arbitrary world sheets can be expressed in terms of Wilson graphs in appropriate three-manifolds. We present a sys tematic approach to boundary conditions that break bulk symmetries. It is based on the construction, by `alpha-induction, of a fusion ring for the boundary fields. Its structure constants are the annulus coefficients and its 6j-symbols give the OPE of boundary fields. Symmetry breaking boundary conditions correspond to solitonic sectors.
We discuss consequences of the breaking of conformal symmetry by a flat or spherical extended operator. We adapt the embedding formalism to the study of correlation functions of symmetric traceless tensors in the presence of the defect. Two-point fun ctions of a bulk and a defect primary are fixed by conformal invariance up to a set of OPE coefficients, and we identify the allowed tensor structures. A correlator of two bulk primaries depends on two cross-ratios, and we study its conformal block decomposition in the case of external scalars. The Casimir equation in the defect channel reduces to a hypergeometric equation, while the bulk channel blocks are recursively determined in the light-cone limit. In the special case of a defect of codimension two, we map the Casimir equation in the bulk channel to the one of a four-point function without defect. Finally, we analyze the contact terms of the stress-tensor with the extended operator, and we deduce constraints on the CFT data. In two dimensions, we relate the displacement operator, which appears among the contact terms, to the reflection coefficient of a conformal interface, and we find unitarity bounds for the latter.
119 - Tom Banks , Nathan Seiberg 2010
We discuss aspects of global and gauged symmetries in quantum field theory and quantum gravity, focusing on discrete gauge symmetries. An effective Lagrangian description of $Z_p$ gauge theories shows that they are associated with an emergent $Z_p$ o ne-form (Kalb-Ramond) gauge symmetry. This understanding leads us to uncover new observables and new phenomena in nonlinear $sigma$-models. It also allows us to expand on Polchinskis classification of cosmic strings. We argue that in models of quantum gravity, there are no global symmetries, all continuous gauge symmetries are compact, and all charges allowed by Dirac quantization are present in the spectrum. These conjectures are not new, but we present them from a streamlined and unified perspective. Finally, our discussion about string charges and symmetries leads to a more physical and more complete understanding of recently found consistency conditions of supergravity.
We study the kinematics of correlation functions of local and extended operators in a conformal field theory. We present a new method for constructing the tensor structures associated to primary operators in an arbitrary bosonic representation of the Lorentz group. The recipe yields the explicit structures in embedding space, and can be applied to any correlator of local operators, with or without a defect. We then focus on the two-point function of traceless symmetric primaries in the presence of a conformal defect, and explain how to compute the conformal blocks. In particular, we illustrate various techniques to generate the bulk channel blocks either from a radial expansion or by acting with differential operators on simpler seed blocks. For the defect channel, we detail a method to compute the blocks in closed form, in terms of projectors into mixed symmetry representations of the orthogonal group.
In this paper we use the AdS/CFT correspondence to refine and then establish a set of old conjectures about symmetries in quantum gravity. We first show that any global symmetry, discrete or continuous, in a bulk quantum gravity theory with a CFT dua l would lead to an inconsistency in that CFT, and thus that there are no bulk global symmetries in AdS/CFT. We then argue that any long-range bulk gauge symmetry leads to a global symmetry in the boundary CFT, whose consistency requires the existence of bulk dynamical objects which transform in all finite-dimensional irreducible representations of the bulk gauge group. We mostly assume that all internal symmetry groups are compact, but we also give a general condition on CFTs, which we expect to be true quite broadly, which implies this. We extend all of these results to the case of higher-form symmetries. Finally we extend a recently proposed new motivation for the weak gravity conjecture to more general gauge groups, reproducing the convex hull condition of Cheung and Remmen. An essential point, which we dwell on at length, is precisely defining what we mean by gauge and global symmetries in the bulk and boundary. Quantum field theory results we meet while assembling the necessary tools include continuous global symmetries without Noether currents, new perspectives on spontaneous symmetry-breaking and t Hooft anomalies, a new order parameter for confinement which works in the presence of fundamental quarks, a Hamiltonian lattice formulation of gauge theories with arbitrary discrete gauge groups, an extension of the Coleman-Mandula theorem to discrete symmetries, and an improved explanation of the decay $pi^0togamma gamma$ in the standard model of particle physics. We also describe new black hole solutions of the Einstein equation in $d+1$ dimensions with horizon topology $mathbb{T}^ptimes mathbb{S}^{d-p-1}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا