ترغب بنشر مسار تعليمي؟ اضغط هنا

Symmetries in quantum field theory and quantum gravity

133   0   0.0 ( 0 )
 نشر من قبل Daniel Harlow
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we use the AdS/CFT correspondence to refine and then establish a set of old conjectures about symmetries in quantum gravity. We first show that any global symmetry, discrete or continuous, in a bulk quantum gravity theory with a CFT dual would lead to an inconsistency in that CFT, and thus that there are no bulk global symmetries in AdS/CFT. We then argue that any long-range bulk gauge symmetry leads to a global symmetry in the boundary CFT, whose consistency requires the existence of bulk dynamical objects which transform in all finite-dimensional irreducible representations of the bulk gauge group. We mostly assume that all internal symmetry groups are compact, but we also give a general condition on CFTs, which we expect to be true quite broadly, which implies this. We extend all of these results to the case of higher-form symmetries. Finally we extend a recently proposed new motivation for the weak gravity conjecture to more general gauge groups, reproducing the convex hull condition of Cheung and Remmen. An essential point, which we dwell on at length, is precisely defining what we mean by gauge and global symmetries in the bulk and boundary. Quantum field theory results we meet while assembling the necessary tools include continuous global symmetries without Noether currents, new perspectives on spontaneous symmetry-breaking and t Hooft anomalies, a new order parameter for confinement which works in the presence of fundamental quarks, a Hamiltonian lattice formulation of gauge theories with arbitrary discrete gauge groups, an extension of the Coleman-Mandula theorem to discrete symmetries, and an improved explanation of the decay $pi^0togamma gamma$ in the standard model of particle physics. We also describe new black hole solutions of the Einstein equation in $d+1$ dimensions with horizon topology $mathbb{T}^ptimes mathbb{S}^{d-p-1}$.

قيم البحث

اقرأ أيضاً

We review the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this corres pondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N=4 supersymmetric gauge theory in four dimensions, but we discuss also field theories in other dimensions, conformal and non-conformal, with or without supersymmetry, and in particular the relation to QCD. We also discuss some implications for black hole physics.
We present an overview of the phenomenological implications of the theory of resummed quantum gravity. We discuss its prediction for the cosmological constant in the context of the Planck scale cosmology of Bonanno and Reuter, its relationship to Wei nbergs asymptotic safety idea, and its relationship to Weinbergs soft graviton resummation theorem. We also discuss constraints and consistency checks of the theory.
Most discussions of propagators in Lee-Wick theories focus on the presence of two massive complex conjugate poles in the propagator. We show that there is in fact only one pole near the physical region, or in another representation three pole-like st ructures with compensating extra poles. The latter modified Lehmann representation is useful caculationally and conceptually only if one includes the resonance structure in the spectral integral.
120 - Hidenori Fukaya 2018
Gravity is difficult to quantize. This is a well-known fact but its reason is given simply by non-renormalizability of the Newton constant and little is discussed why among many quantum gauge theories, gravity is special. In this essay we try to trea t the gravity as one of many gauge theories, and discuss how it is special and why it is difficult to quantize.
426 - T. Banks 2003
There are many theories of quantum gravity, depending on asymptotic boundary conditions, and the amount of supersymmetry. The cosmological constant is one of the fundamental parameters that characterize different theories. If it is positive, supersym metry must be broken. A heuristic calculation shows that a cosmological constant of the observed size predicts superpartners in the TeV range. This mechanism for SUSY breaking also puts important constraints on low energy particle physics models. This essay was submitted to the Gravity Research Foundation Competition and is based on a longer article, which will be submitted in the near future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا