ﻻ يوجد ملخص باللغة العربية
The isostructural alloying of two compounds with extremely different magnetic and thermo-structural properties has resulted in a new system, (MnNiSi)1-x(FeCoGe)x, that exhibits extraordinary magnetocaloric properties with an acute sensitivity to applied hydrostatic pressure (P). Application of hydrostatic pressure shifts the first-order phase transition to lower temperature ($Delta$ T=-41 K with P=3.43 kbar) but preserves the giant value of isothermal entropy change (-$Delta$S$max$=143.7 J/kg K for a field change of {Delta}B=5 T at atmospheric pressure). Together with the magnetic field, this pressure-induced temperature shift can be used to significantly increase the effective relative cooling power.
We propose the phase diagram of a new pseudo-ternary compound, CoMnGe_{1-x}Sn_{x}, in the range x less than or equal to 0.1. Our phase diagram is a result of magnetic and calometric measurements. We demonstrate the appearance of a hysteretic magnetos
Diamagnetic susceptibility measurements under high hydrostatic pressure (up to 1.03 GPa) were carried out on the newly discovered Fe-based superconductor LaO_{1-x}F_{x}FeAs(x=0.11). The transition temperature T_c, defined as the point at the maximum
We report on the existence of acoustic emission during the paramagnetic-monoclinic to ferromagnetic-orthorhombic magnetostructural phase transition in the giant magnetocaloric Gd5Si2Ge2 compound. The transition kinetics have been analyzed from the de
We discuss a new narrow-gap ferromagnetic (FM) semiconductor alloy, In(1-x)Mn(x)Sb, and its growth by low-temperature molecular-beam epitaxy. The magnetic properties were investigated by direct magnetization measurements, electrical transport, magnet
Magnetocaloric materials can be useful in magnetic refrigeration applications, but to be practical the magneto-refrigerant needs to have a very large magnetocaloric effect (MCE) near room temperature for modest applied fields (<2 Tesla) with small hy