ﻻ يوجد ملخص باللغة العربية
A material exhibiting a negative Poissons ratio is always one of the leading topics in materials science, which is due to the potential applications in those special areas such as defence and medicine. In this letter, we demonstrate a new material, few-layer orthorhombic arsenic, also possesses the negative Poissons ratio. For monolayer arsenic, the negative Poissons ratio is predicted to be around -0.09, originated from the hinge-like structure within the single layer of arsenic. When the layer increases, the negative Poissons ratio becomes more negative and finally approaches the limit at four-layer, which is very close to the bulks value of -0.12. The underlying mechanism is proposed for this layer-dependent negative Poissons ratio, where the internal bond lengths as well as the normal Poissons ratio within layer play a key role. The study like ours sheds new light on the physics of negative Poissons ratio in those hinge-like nano-materials.
We employ a tight-binding parametrization based on the Slater Koster model in order to fit the band structures of single-layer, bilayer and bulk black phosphorus obtained from first-principles calculations. We find that our model, which includes 9 or
We have given a summary on our theoretical predictions of three kinds of topological semimetals (TSMs), namely, Dirac semimetal (DSM), Weyl semimetal (WSM) and Node-Line Semimetal (NLSM). TSMs are new states of quantum matters, which are different wi
The bulk photovoltaic effect (BPVE) refers to current generation due to illumination by light in a homogeneous bulk material lacking inversion symmetry. In addition to the intensively studied shift current, the ballistic current, which originates fro
We report first-principles density-functional theory studies of native point defects and defect complexes in olivine-type LiFePO4, a promising candidate for rechargeable Li-ion battery electrodes. The defects are characterized by their formation ener
We present calculations for electronic and magnetic properties of surface states confined by a circular quantum corral built of magnetic adatoms (Fe) on a Cu(111) surface. We show the oscillations of charge and magnetization densities within the corr