ﻻ يوجد ملخص باللغة العربية
We investigate the formation of a galaxy reaching a virial mass of $~ 10^8$ solar mass at $z=10$ by carrying out a zoomed radiation-hydrodynamical cosmological simulation. This simulation traces Population~III (Pop~III) star formation, characterized by a modestly top-heavy initial mass function (IMF), and considers stellar feedback such as photoionization heating from Pop III and Population~II (Pop~II) stars, mechanical and chemical feedback from supernovae (SNe), and X-ray feedback from accreting black holes (BHs) and high-mass X-ray binaries (HMXBs). We self-consistently impose a transition in star formation mode from top-heavy Pop III to low-mass Pop~II, and find that the star formation rate in the computational box is dominated by Pop~III until $z=13$, and by Pop~II thereafter. The simulated galaxy experiences bursty star formation, with a substantially reduced gas content due to photoionization heating from Pop~III and Pop~II stars, together with SN feedback. All the gas within the simulated galaxy is metal-enriched above $10^{-5}$ solar, such that there are no remaining pockets of primordial gas. The simulated galaxy has an estimated observed flux of $~10^{-3} nJy$, which is too low to be detected by the James Webb Space Telescope (JWST) without strong lensing amplification. We also show that our simulated galaxy is similar in terms of stellar mass to Segue 2, the least luminous dwarf known in the Local Group.
We introduce the Virgo Consortiums EAGLE project, a suite of hydrodynamical simulations that follow the formation of galaxies and black holes in representative volumes. We discuss the limitations of such simulations in light of their finite resolutio
We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through self-consistent, cosmological simulations. X-ray radiation from th
The discovery of luminous quasars at redshifts up to 7.5 demonstrates the existence of several billion M_sun supermassive black holes (SMBHs) less than a billion years after the Big Bang. They are accompanied by intense star formation in their host g
We derive the close pair fractions and volume merger rates as a function of luminosity and morphology for galaxies in the GAMA survey with -23 < M(r) < -17 at 0.01 < z < 0.22. The merger fraction is about 0.015 at all luminosities (assuming 1/2 of pa
We present FIRE/Gizmo hydrodynamic zoom-in simulations of isolated dark matter halos, two each at the mass of classical dwarf galaxies ($M_{rm vir} simeq 10^{10} M_{odot}$) and ultra-faint galaxies ($M_{rm vir} simeq 10^9 M_{odot}$), and with two fee