ﻻ يوجد ملخص باللغة العربية
We study how the first galaxies were assembled under feedback from the accretion onto a central black hole (BH) that is left behind by the first generation of metal-free stars through self-consistent, cosmological simulations. X-ray radiation from the accretion of gas onto BH remnants of Population III (Pop III) stars, or from high-mass X-ray binaries (HMXBs), again involving Pop III stars, influences the mode of second generation star formation. We track the evolution of the black hole accretion rate and the associated X-ray feedback starting with the death of the Pop III progenitor star inside a minihalo and following the subsequent evolution of the black hole as the minihalo grows to become an atomically cooling galaxy. We find that X-ray photoionization heating from a stellar-mass BH is able to quench further star formation in the host halo at all times before the halo enters the atomic cooling phase. X-ray radiation from a HMXB, assuming a luminosity close to the Eddington value, exerts an even stronger, and more diverse, feedback on star formation. It photoheats the gas inside the host halo, but also promotes the formation of molecular hydrogen and cooling of gas in the intergalactic medium and in nearby minihalos, leading to a net increase in the number of stars formed at early times. Our simulations further show that the radiative feedback from the first BHs may strongly suppress early BH growth, thus constraining models for the formation of supermassive BHs.
We investigate the formation of a galaxy reaching a virial mass of $~ 10^8$ solar mass at $z=10$ by carrying out a zoomed radiation-hydrodynamical cosmological simulation. This simulation traces Population~III (Pop~III) star formation, characterized
Star formation in the universes most massive galaxies proceeds furiously early in time but then nearly ceases. Plenty of hot gas remains available but does not cool and condense into star-forming clouds. Active galactic nuclei (AGN) release enough en
Understanding the processes that drive galaxy formation and shape the observed properties of galaxies is one of the most interesting and challenging frontier problems of modern astrophysics. We now know that the evolution of galaxies is critically sh
Dark matter may consist, at least partially, of primordial black holes formed during the radiation-dominated era. The radiation produced by accretion onto primordial black holes leaves characteristic signatures on the properties of the medium at high
We investigate the effects of massive black hole growth on the structural evolution of dwarf galaxies within the Romulus25 cosmological hydrodynamical simulation. We study a sample of 228 central, isolated dwarf galaxies with stellar masses $M_{star}