ترغب بنشر مسار تعليمي؟ اضغط هنا

Galactic magnetic fields and hierarchical galaxy formation

405   0   0.0 ( 0 )
 نشر من قبل Luiz Felippe Santiago Rodrigues
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A framework is introduced for coupling the evolution of galactic magnetic fields sustained by the mean-field dynamo with the formation and evolution of galaxies in cold dark matter cosmology. Estimates of the steady-state strength of the large-scale and turbulent magnetic fields from mean-field and fluctuation dynamo models are used together with galaxy properties predicted by semi-analytic models of galaxy formation for a population of spiral galaxies. We find that the field strength is mostly controlled by the evolving gas content of the galaxies. Thus, because of the differences in the implementation of the star formation law, feedback from supernovae and ram-pressure stripping, each of the galaxy formation models considered predicts a distribution of field strengths with unique features. The most prominent of them is the difference in typical magnetic fields strengths obtained for the satellite and central galaxy populations as well as the typical strength of the large-scale magnetic field in galaxies of different mass.

قيم البحث

اقرأ أيضاً

Magnetic fields on a range of scales play a large role in the ecosystems of galaxies, both in the galactic disk and in the extended layers of gas away from the plane. Observing magnetic field strength, structure and orientation is complex, and necess arily indirect. Observational data of magnetic fields in the halo of the Milky Way are scarce, and non-conclusive about the large-scale structure of the field. In external galaxies, various large-scale configurations of magnetic fields are measured, but many uncertainties about exact configurations and their origin remain. There is a strong interaction between magnetic fields and other components in the interstellar medium such as ionized and neutral gas and cosmic rays. The energy densities of these components are comparable on large scales, indicating that magnetic fields are not passive tracers but that magnetic field feedback on the other interstellar medium components needs to be taken into account.
We study the cosmic evolution of the magnetic fields of a large sample of spiral galaxies in a cosmologically representative volume by employing a semi-analytic galaxy formation model and numerical dynamo solver in tandem. We start by deriving time- and radius-dependent galaxy properties using the galform galaxy formation model, which are then fed into the nonlinear mean-field dynamo equations. These are solved to give the large-scale (mean) field as a function of time and galactocentric radius for a thin disc, assuming axial symmetry. A simple prescription for the evolution of the small-scale (random) magnetic field component is also adopted. We find that, while most massive galaxies are predicted to have large-scale magnetic fields at redshift z=0, a significant fraction of them are expected to contain negligible large-scale field. Our model indicates that, for most of the galaxies containing large-scale magnetic fields today, the mean-field dynamo becomes active at z<3. We compute the radial profiles of pitch angle, and find broad agreement with observational data for nearby galaxies.
We present a suite of high-resolution cosmological simulations, using the FIRE-2 feedback physics together with explicit treatment of magnetic fields, anisotropic conduction and viscosity, and cosmic rays (CRs) injected by supernovae (including aniso tropic diffusion, streaming, adiabatic, hadronic and Coulomb losses). We survey systems from ultra-faint dwarf ($M_{ast}sim 10^{4},M_{odot}$, $M_{rm halo}sim 10^{9},M_{odot}$) through Milky Way masses, systematically vary CR parameters (e.g. the diffusion coefficient $kappa$ and streaming velocity), and study an ensemble of galaxy properties (masses, star formation histories, mass profiles, phase structure, morphologies). We confirm previous conclusions that magnetic fields, conduction, and viscosity on resolved ($gtrsim 1,$pc) scales have small effects on bulk galaxy properties. CRs have relatively weak effects on all galaxy properties studied in dwarfs ($M_{ast} ll 10^{10},M_{odot}$, $M_{rm halo} lesssim 10^{11},M_{odot}$), or at high redshifts ($zgtrsim 1-2$), for any physically-reasonable parameters. However at higher masses ($M_{rm halo} gtrsim 10^{11},M_{odot}$) and $zlesssim 1-2$, CRs can suppress star formation by factors $sim 2-4$, given relatively high effective diffusion coefficients $kappa gtrsim 3times10^{29},{rm cm^{2},s^{-1}}$. At lower $kappa$, CRs take too long to escape dense star-forming gas and lose energy to hadronic collisions, producing negligible effects on galaxies and violating empirical constraints from $gamma$-ray emission. But around $kappasim 3times10^{29},{rm cm^{2},s^{-1}}$, CRs escape the galaxy and build up a CR-pressure-dominated halo which supports dense, cool ($Tll 10^{6}$ K) gas that would otherwise rain onto the galaxy. CR heating (from collisional and streaming losses) is never dominant.
73 - Kristian Ehlert 2020
The study of velocity fields of the hot gas in galaxy clusters can help to unravel details of microphysics on small-scales and to decipher the nature of feedback by active galactic nuclei (AGN). Likewise, magnetic fields as traced by Faraday rotation measurements (RMs) inform about their impact on gas dynamics as well as on cosmic ray production and transport. We investigate the inherent relationship between large-scale gas kinematics and magnetic fields through non-radiative magnetohydrodynamical simulations of the creation, evolution and disruption of AGN jet-inflated lobes in an isolated Perseus-like galaxy cluster, with and without pre-existing turbulence. In particular, we connect cluster velocity measurements with mock RM maps to highlight their underlying physical connection, which opens up the possibility of comparing turbulence levels in two different observables. For single jet outbursts, we find only a local impact on the velocity field, i.e. the associated increase in velocity dispersion is not volume-filling. Furthermore, in a setup with pre-existing turbulence, this increase in velocity dispersion is largely hidden. We use mock X-ray observations to show that at arcmin resolution, the velocity dispersion is therefore dominated by existing large-scale turbulence and is only minimally altered by the presence of a jet. For the velocity structure of central gas uplifted by buoyantly rising lobes, we find fast, coherent outflows with low velocity dispersion. Our results highlight that projected velocity distributions show complex structures which pose challenges for the interpretation of observations.
We describe the GALFORM semi-analytic model for calculating the formation and evolution of galaxies in hierarchical models. It improves upon, and extends, the Cole et al 1994 model. The model employs a new Monte-Carlo algorithm to follow the merging evolution of dark matter halos with arbitrary mass resolution. It incorporates realistic descriptions of the density profiles of dark matter halos and their gas content; follows the chemical evolution of gas and stars, and the associated production of dust; and includes a detailed calculation of the sizes of disks and spheroids. Wherever possible, our prescriptions for modelling individual physical processes are based on results of numerical simulations. We apply our methods to the LCDM cosmology (Omega_0=0.3, Lambda_0=0.7), and find good agreement with a wide range of properties of the local galaxy population: the B-band and K-band luminosity functions, the distribution of colours for the population as a whole, the ratio of ellipticals to spirals, the distribution of disk sizes, and the current cold gas content of disks. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا