ترغب بنشر مسار تعليمي؟ اضغط هنا

Connecting turbulent velocities and magnetic fields in galaxy cluster simulations with active galactic nuclei jets

74   0   0.0 ( 0 )
 نشر من قبل Kristian Ehlert
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kristian Ehlert




اسأل ChatGPT حول البحث

The study of velocity fields of the hot gas in galaxy clusters can help to unravel details of microphysics on small-scales and to decipher the nature of feedback by active galactic nuclei (AGN). Likewise, magnetic fields as traced by Faraday rotation measurements (RMs) inform about their impact on gas dynamics as well as on cosmic ray production and transport. We investigate the inherent relationship between large-scale gas kinematics and magnetic fields through non-radiative magnetohydrodynamical simulations of the creation, evolution and disruption of AGN jet-inflated lobes in an isolated Perseus-like galaxy cluster, with and without pre-existing turbulence. In particular, we connect cluster velocity measurements with mock RM maps to highlight their underlying physical connection, which opens up the possibility of comparing turbulence levels in two different observables. For single jet outbursts, we find only a local impact on the velocity field, i.e. the associated increase in velocity dispersion is not volume-filling. Furthermore, in a setup with pre-existing turbulence, this increase in velocity dispersion is largely hidden. We use mock X-ray observations to show that at arcmin resolution, the velocity dispersion is therefore dominated by existing large-scale turbulence and is only minimally altered by the presence of a jet. For the velocity structure of central gas uplifted by buoyantly rising lobes, we find fast, coherent outflows with low velocity dispersion. Our results highlight that projected velocity distributions show complex structures which pose challenges for the interpretation of observations.



قيم البحث

اقرأ أيضاً

The co-evolution between supermassive black holes and their environment is most directly traced by the hot atmospheres of dark matter halos. Cooling of the hot atmosphere supplies the central regions with fresh gas, igniting active galactic nuclei (A GN) with long duty cycles. Outflows from the central engine tightly couple with the surrounding gaseous medium and provide the dominant heating source preventing runaway cooling by carving cavities and driving shocks across the medium. The AGN feedback loop is a key feature of all modern galaxy evolution models. Here we review our knowledge of the AGN feedback process in the specific context of galaxy groups. Galaxy groups are uniquely suited to constrain the mechanisms governing the cooling-heating balance. Unlike in more massive halos, the energy supplied by the central AGN to the hot intragroup medium can exceed the gravitational binding energy of halo gas particles. We report on the state-of-the-art in observations of the feedback phenomenon and in theoretical models of the heating-cooling balance in galaxy groups. We also describe how our knowledge of the AGN feedback process impacts on galaxy evolution models and on large-scale baryon distributions. Finally, we discuss how new instrumentation will answer key open questions on the topic.
Energy deposition by active galactic nuclei jets into the ambient medium can affect galaxy formation and evolution, the cooling of gas flows at the centres of galaxy clusters, and the growth of the supermassive black holes. However, the processes tha t couple jet power to the ambient medium and determine jet morphology are poorly understood. For instance, there is no agreement on the cause of the well-known Fanaroff-Riley (FR) morphological dichotomy of jets, with FRI jets being shorter and less stable than FRII jets. We carry out global 3D magnetohydrodynamic simulations of relativistic jets propagating through the ambient medium. We show that the flat density profiles of galactic cores slow down and collimate the jets, making them susceptible to the 3D magnetic kink instability. We obtain a critical power, which depends on the galaxy core mass and radius, below which jets become kink-unstable within the core, stall, and inflate cavities filled with relativistically-hot plasma. Jets above the critical power stably escape the core and form powerful backflows. Thus, the kink instability controls the jet morphology and can lead to the FR dichotomy. The model-predicted dependence of the critical power on the galaxy optical luminosity agrees well with observations.
We present estimates of magnetic field in a number of AGNs from the Spectropolarimetric atlas of Smith, Young & Robinson (2002) from the observed degrees of linear polarization and the positional angles of spectral lines (H-alpha) (broad line regions of AGNs) and nearby continuum. The observed polarization is lower than the Milne value in a non-magnetized atmosphere. We hypothesize that the polarized radiation escapes from optically thick magnetized accretion discs and is weakened by the Faraday rotation effect. This effect is able to explain both the value of the polarization and the position angle. We estimate the required magnetic field in the broad line region by using simple asymptotic analytical formulas for Milnes problem in magnetized atmosphere, which take into account the last scattering of radiation before escaping from the accretion disc. The polarization of a broad spectral line escaping from disc is described by the same mechanism. The characteristic features of polarization of a broad line is the minimum of the degree of polarization in the center of the line and continuous rotation of the position angle from one wing to another. These effects can be explained by existence of clouds in the left (velocity is directed to an observer) and the right (velocity is directed from an observer) parts of the orbit in a rotating keplerian magnetized accretion disc. The base of explanation is existence of azimuthal magnetic field in the orbit. The existence of normal component of magnetic field makes the picture of polarization asymmetric. The existence of clouds in left and right parts of the orbit with different emissions also give the contribution in asymmetry effect. Assuming a power-law dependence of the magnetic field inside the disc, we obtain the estimate of the magnetic field strength at first stable orbit near the central SMBH for a number of AGNs.
143 - K.I. Caputi 2014
The remarkable progress made in infrared (IR) astronomical instruments over the last 10-15 years has radically changed our vision of the extragalactic IR sky, and overall understanding of galaxy evolution. In particular, this has been the case for th e study of active galactic nuclei (AGN), for which IR observations provide a wealth of complementary information that cannot be derived from data in other wavelength regimes. In this review, I summarize the unique contribution that IR astronomy has recently made to our understanding of AGN and their role in galaxy evolution, including both physical studies of AGN at IR wavelengths, and the search for AGN among IR galaxies in general. Finally, I identify and discuss key open issues that it should be possible to address with forthcoming IR telescopes.
131 - Ryan C. Hickox 2018
Active Galactic Nuclei (AGN) are powered by the accretion of material onto a supermassive black hole (SMBH), and are among the most luminous objects in the Universe. However, the huge radiative power of most AGN cannot be seen directly, as the accret ion is hidden behind gas and dust that absorbs many of the characteristic observational signatures. This obscuration presents an important challenge for uncovering the complete AGN population and understanding the cosmic evolution of SMBHs. In this review we describe a broad range of multi-wavelength techniques that are currently employed to identify obscured AGN, and assess the reliability and completeness of each technique. We follow with a discussion of the demographics of obscured AGN activity, explore the nature and physical scales of the obscuring material, and assess the implications of obscured AGN for observational cosmology. We conclude with an outline of the prospects for future progress from both observations and theoretical models, and highlight some of the key outstanding questions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا