ترغب بنشر مسار تعليمي؟ اضغط هنا

On the need of the Light Elements Primary Process (LEPP)

402   0   0.0 ( 0 )
 نشر من قبل Sergio Cristallo
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Extant chemical evolution models underestimate the Galactic production of Sr, Y and Zr as well as the Solar System abundances of s-only isotopes with 90<A<130. To solve this problem, an additional (unknown) process has been invoked, the so-called LEPP (Light Element Primary Process). In this paper we investigate possible alternative solutions. Basing on Full Network Stellar evolutionary calculations, we investigate the effects on the Solar System s-only distribution induced by the inclusion of some commonly ignored physical processes (e.g. rotation) or by the variation of the treatment of convective overshoot, mass-loss and the efficiency of nuclear processes. Our main findings are: 1) at the epoch of the formation of the Solar System, our reference model produces super-solar abundances for the whole s-only distribution, even in the range 90<A<130; 2) within errors, the s-only distribution relative to 150Sm is flat; 3) the s-process contribution of the less massive AGB stars (M<1.5 M_SUN) as well as of the more massive ones (M>4.0 M_SUN) are negligible; 4) the inclusion of rotation implies a downward shift of the whole distribution with an higher efficiency for the heavy s-only isotopes, leading to a flatter s-only distribution; 5) different prescriptions on convection or mass-loss produce nearly rigid shifts of the whole distribution. In summary, a variation of the standard paradigm of AGB nucleosynthesis would allow to reconcile models predictions with Solar System s-only abundances. Nonetheless, the LEPP cannot be definitely ruled out, because of the uncertainties still affecting stellar and Galactic chemical evolution models.

قيم البحث

اقرأ أيضاً

The origin of the proton-rich trans-iron isotopes in the solar system is still uncertain. Single-degenerate thermonuclear supernovae (SNIa) with n-capture nucleosynthesis seeds assembled in the external layers of the progenitors rapidly accreting whi te dwarf phase may produce these isotopes. We calculate the stellar structure of the accretion phase of five white dwarf models with initial masses >~ 0.85Msun using the stellar code MESA. The near-surface layers of the 1, 1.26, 1.32 and 1.38Msun models are most representative of the regions in which the bulk of the p nuclei are produced during SNIa explosions, and for these models we also calculate the neutron-capture nucleosynthesis in the external layers. Contrary to previous rapidly-accreting white dwarf models at lower mass, we find that the H-shell ashes are the main site of n-capture nucleosynthesis. We find high neutron densities up to several 10^15 cm^-3 in the most massive WDs. Through the recurrence of the H-shell ashes these intermediate neutron densities can be sustained effectively for a long time leading to high neutron exposures with a strong production up to Pb. Both the neutron density and the neutron exposure increase with increasing the mass of the accreting WD. Finally, the SNIa nucleosynthesis is calculated using the obtained abundances as seeds. We obtain solar to super-solar abundances for p-nuclei with A>96. Our models show that SNIa are a viable p-process production site.
The production of the elements heavier than iron via slow neutron captures (the s process) is a main feature of the contribution of asymptotic giant branch (AGB) stars of low mass (< 5 Msun) to the chemistry of the cosmos. However, our understanding of the main neutron source, the 13C(alpha,n)16O reaction, is still incomplete. It is commonly assumed that in AGB stars mixing beyond convective borders drives the formation of 13C pockets. However, there is no agreement on the nature of such mixing and free parameters are present. By means of a parametric model we investigate the impact of different mixing functions on the final s-process abundances in low-mass AGB models. Typically, changing the shape of the mixing function or the mass extent of the region affected by the mixing produce the same results. Variations in the relative abundance distribution of the three s-process peaks (Sr, Ba, and Pb) are generally within +/-0.2 dex, similar to the observational error bars. We conclude that other stellar uncertainties - the effect of rotation and of overshoot into the C-O core - play a more important role than the details of the mixing function. The exception is at low metallicity, where the Pb abundance is significantly affected. In relation to the composition observed in stardust SiC grains from AGB stars, the models are relatively close to the data only when assuming the most extreme variation in the mixing profile.
Neutron-star mergers were recently confirmed as sites of rapid-neutron-capture (r-process) nucleosynthesis. However, in Galactic chemical evolution models, neutron-star mergers alone cannot reproduce the observed element abundance patterns of extreme ly metal-poor stars, which indicates the existence of other sites of r-process nucleosynthesis. These sites may be investigated by studying the element abundance patterns of chemically primitive stars in the halo of the Milky Way, because these objects retain the nucleosynthetic signatures of the earliest generation of stars. Here we report the element abundance pattern of the extremely metal-poor star SMSS J200322.54-114203.3. We observe a large enhancement in r-process elements, with very low overall metallicity. The element abundance pattern is well matched by the yields of a single 25-solar-mass magnetorotational hypernova. Such a hypernova could produce not only the r-process elements, but also light elements during stellar evolution, and iron-peak elements during explosive nuclear burning. Hypernovae are often associated with long-duration gamma-ray bursts in the nearby Universe. This connection indicates that similar explosions of fast-spinning strongly magnetized stars occurred during the earliest epochs of star formation in our Galaxy.
The Solar Corona Imager is an internally occulted coronagraph on board the ASO-S mission, which has the advantage of imaging the inner corona in H I {Lyman-textalpha} (Ly-alpha) and white-light (WL) wavebands. However, scattering of solar disk light by the primary mirror (M1) becomes the main source of stray light. To study the methods of stray light suppression, three scattering models are used to model M1 scattering in Zemax OpticStudio. The ratio of coronal emission to predicted stray light decrease along field of view in both channels. The stray light in Ly-alpha channel is generally lower than coronal emission, but the stray light in WL channel tends to be one order of magnitude higher than coronal signal at 2.5 Rsun. Optimized parameter combinations that suppress the stray light to required level are obtained, which put some limitations on the M1 manufacture. Besides, K-correlation model is recommended to simulate surface scattering.
102 - S. Goriely 2013
Neutron star (NS) merger ejecta offer a viable site for the production of heavy r-process elements with nuclear mass numbers A > 140. The crucial role of fission recycling is responsible for the robustness of this site against many astrophysical unce rtainties, but calculations sensitively depend on nuclear physics. In particular the fission fragment yields determine the creation of 110 < A < 170 nuclei. Here we apply a new scission-point model, called SPY, to derive the fission fragment distribution (FFD) of all relevant neutron-rich, fissioning nuclei. The model predicts a doubly asymmetric FFD in the abundant A ~ 278 mass region that is responsible for the final recycling of the fissioning material. Using ejecta conditions based on relativistic NS merger calculations we show that this specific FFD leads to a production of the A ~ 165 rare-earth peak that is nicely compatible with the abundance patterns in the Sun and metal-poor stars. This new finding further strengthens the case of NS mergers as possible dominant origin of r-nuclei with A > 140.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا