ﻻ يوجد ملخص باللغة العربية
A classic theorem of Euclidean geometry asserts that any noncollinear set of $n$ points in the plane determines at least $n$ distinct lines. Chen and Chvatal conjectured that this holds for an arbitrary finite metric space, with a certain natural definition of lines in a metric space. We prove that in any metric space with $n$ points, either there is a line containing all the points or there are at least $Omega(sqrt{n})$ lines. This is the first polynomial lower bound on the number of lines in general finite metric spaces. In the more general setting of pseudometric betweenness, we prove a corresponding bound of $Omega(n^{2/5})$ lines. When the metric space is induced by a connected graph, we prove that either there is a line containing all the points or there are $Omega(n^{4/7})$ lines, improving the previous $Omega(n^{2/7})$ bound. We also prove that the number of lines in an $n$-point metric space is at least $n / 5w$, where $w$ is the number of different distances in the space, and we give an $Omega(n^{4/3})$ lower bound on the number of lines in metric spaces induced by graphs with constant diameter, as well as spaces where all the positive distances are from {1, 2, 3}.
The line generated by two distinct points, $x$ and $y$, in a finite metric space $M=(V,d)$, denoted by $overline{xy}^M$, is the set of points given by $$overline{xy}^M:={zin V: d(x,y)=|d(x,z)pm d(z,y)|}.$$ A 2-set ${x,y}$ such that $overline{xy}^M=V$
We relate the existence of many infinite geodesics on Alexandrov spaces to a statement about the average growth of volumes of balls. We deduce that the geodesic flow exists and preserves the Liouville measure in several important cases. The developed
We characterize the topological configurations of points and lines that may arise when placing n points on a circle and drawing the n perpendicular bisectors of the sides of the corresponding convex cyclic n-gon. We also provide exact and asymptotic
We prove a compactness result for bounded sequences $(u_j)_j$ of functions with bounded variation in metric spaces $(X,d_j)$ where the space $X$ is fixed but the metric may vary with $j$. We also provide an application to Carnot-Caratheodory spaces.
We describe the behavior of p-harmonic Greens functions near a singularity in metric measure spaces equipped with a doubling measure and supporting a Poincare inequality.