ترغب بنشر مسار تعليمي؟ اضغط هنا

Motion-Based Handwriting Recognition

106   0   0.0 ( 0 )
 نشر من قبل Junshen Kevin Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We attempt to overcome the restriction of requiring a writing surface for handwriting recognition. In this study, we design a prototype of a stylus equipped with motion sensor, and utilizes gyroscopic and acceleration sensor reading to perform written letter classification using various deep learning techniques such as CNN and RNNs. We also explore various data augmentation techniques and their effects, reaching up to 86% accuracy.



قيم البحث

اقرأ أيضاً

In this project, we leverage a trained single-letter classifier to predict the written word from a continuously written word sequence, by designing a word reconstruction pipeline consisting of a dynamic-programming algorithm and an auto-correction mo del. We conduct experiments to optimize models in this pipeline, then employ domain adaptation to explore using this pipeline on unseen data distributions.
This paper introduces an agent-centric approach to handle novelty in the visual recognition domain of handwriting recognition (HWR). An ideal transcription agent would rival or surpass human perception, being able to recognize known and new character s in an image, and detect any stylistic changes that may occur within or across documents. A key confound is the presence of novelty, which has continued to stymie even the best machine learning-based algorithms for these tasks. In handwritten documents, novelty can be a change in writer, character attributes, writing attributes, or overall document appearance, among other things. Instead of looking at each aspect independently, we suggest that an integrated agent that can process known characters and novelties simultaneously is a better strategy. This paper formalizes the domain of handwriting recognition with novelty, describes a baseline agent, introduces an evaluation protocol with benchmark data, and provides experimentation to set the state-of-the-art. Results show feasibility for the agent-centric approach, but more work is needed to approach human-levels of reading ability, giving the HWR community a formal basis to build upon as they solve this challenging problem.
Handwriting Recognition enables a person to scribble something on a piece of paper and then convert it into text. If we look into the practical reality there are enumerable styles in which a character may be written. These styles can be self combined to generate more styles. Even if a small child knows the basic styles a character can be written, he would be able to recognize characters written in styles intermediate between them or formed by their mixture. This motivates the use of Genetic Algorithms for the problem. In order to prove this, we made a pool of images of characters. We converted them to graphs. The graph of every character was intermixed to generate styles intermediate between the styles of parent character. Character recognition involved the matching of the graph generated from the unknown character image with the graphs generated by mixing. Using this method we received an accuracy of 98.44%.
Handwritten text recognition is challenging because of the virtually infinite ways a human can write the same message. Our fully convolutional handwriting model takes in a handwriting sample of unknown length and outputs an arbitrary stream of symbol s. Our dual stream architecture uses both local and global context and mitigates the need for heavy preprocessing steps such as symbol alignment correction as well as complex post processing steps such as connectionist temporal classification, dictionary matching or language models. Using over 100 unique symbols, our model is agnostic to Latin-based languages, and is shown to be quite competitive with state of the art dictionary based methods on the popular IAM and RIMES datasets. When a dictionary is known, we further allow a probabilistic character error rate to correct errant word blocks. Finally, we introduce an attention based mechanism which can automatically target variants of handwriting, such as slant, stroke width, or noise.
Arabic handwriting is a consonantal and cursive writing. The analysis of Arabic script is further complicated due to obligatory dots/strokes that are placed above or below most letters and usually written delayed in order. Due to ambiguities and dive rsities of writing styles, recognition systems are generally based on a set of possible words called lexicon. When the lexicon is small, recognition accuracy is more important as the recognition time is minimal. On the other hand, recognition speed as well as the accuracy are both critical when handling large lexicons. Arabic is rich in morphology and syntax which makes its lexicon large. Therefore, a practical online handwriting recognition system should be able to handle a large lexicon with reasonable performance in terms of both accuracy and time. In this paper, we introduce a fully-fledged Hidden Markov Model (HMM) based system for Arabic online handwriting recognition that provides solutions for most of the difficulties inherent in recognizing the Arabic script. A new preprocessing technique for handling the delayed strokes is introduced. We use advanced modeling techniques for building our recognition system from the training data to provide more detailed representation for the differences between the writing units, minimize the variances between writers in the training data and have a better representation for the features space. System results are enhanced using an additional post-processing step with a higher order language model and cross-word HMM models. The system performance is evaluated using two different databases covering small and large lexicons. Our system outperforms the state-of-art systems for the small lexicon database. Furthermore, it shows promising results (accuracy and time) when supporting large lexicon with the possibility for adapting the models for specific writers to get even better results.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا