ﻻ يوجد ملخص باللغة العربية
The Tsallis and Renyi entropies are important quantities in the information theory, statistics and related fields because the Tsallis entropy is an one parameter generalization of the Shannon entropy and the Renyi entropy includes several useful entropy measures such as the Shannon entropy, Min-entropy and so on, as special choices of its parameter. On the other hand, the discrete-time quantum walk plays important roles in various applications, for example, quantum speed-up algorithm and universal computation. In this paper, we show limiting behaviors of the Tsallis and Renyi entropies for discrete-time quantum walks on the line which are starting from the origin and defined by arbitrary coin and initial state. The results show that the Tsallis entropy behaves in polynomial order of time with the parameter dependent exponent while the Renyi entropy tends to infinity in logarithmic order of time independent of the choice of the parameter. Moreover, we show the difference between the Renyi entropy and the logarithmic function characterizes by the Renyi entropy of the limit distribution of the quantum walk. In addition, we show an example of asymptotic behavior of the conditional Renyi entropies of the quantum walk.
Many of the traditional results in information theory, such as the channel coding theorem or the source coding theorem, are restricted to scenarios where the underlying resources are independent and identically distributed (i.i.d.) over a large numbe
We show that the new quantum extension of Renyis alpha-relative entropies, introduced recently by Muller-Lennert, Dupuis, Szehr, Fehr and Tomamichel, J. Math. Phys. 54, 122203, (2013), and Wilde, Winter, Yang, Commun. Math. Phys. 331, (2014), have an
We show that the quantum $alpha$-relative entropies with parameter $alphain (0,1)$ can be represented as generalized cutoff rates in the sense of [I. Csiszar, IEEE Trans. Inf. Theory 41, 26-34, (1995)], which provides a direct operational interpretat
The Renyi and Tsallis entropies are discussed as possible alternatives to the Bekenstein-Hawking area-law entropy. It is pointed out how replacing the entropy notion, but not the Hawking temperature and the thermodynamical energy may render the whole
We give a topological classification of quantum walks on an infinite 1D lattice, which obey one of the discrete symmetry groups of the tenfold way, have a gap around some eigenvalues at symmetry protected points, and satisfy a mild locality condition