ترغب بنشر مسار تعليمي؟ اضغط هنا

The topological classification of one-dimensional symmetric quantum walks

75   0   0.0 ( 0 )
 نشر من قبل Tobias Geib
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a topological classification of quantum walks on an infinite 1D lattice, which obey one of the discrete symmetry groups of the tenfold way, have a gap around some eigenvalues at symmetry protected points, and satisfy a mild locality condition. No translation invariance is assumed. The classification is parameterized by three indices, taking values in a group, which is either trivial, the group of integers, or the group of integers modulo 2, depending on the type of symmetry. The classification is complete in the sense that two walks have the same indices if and only if they can be connected by a norm continuous path along which all the mentioned properties remain valid. Of the three indices, two are related to the asymptotic behaviour far to the right and far to the left, respectively. These are also stable under compact perturbations. The third index is sensitive to those compact perturbations which cannot be contracted to a trivial one. The results apply to the Hamiltonian case as well. In this case all compact perturbations can be contracted, so the third index is not defined. Our classification extends the one known in the translation invariant case, where the asymptotic right and left indices add up to zero, and the third one vanishes, leaving effectively only one independent index. When two translationally invariant bulks with distinct indices are joined, the left and right asymptotic indices of the joined walk are thereby fixed, and there must be eigenvalues at $1$ or $-1$ (bulk-boundary correspondence). Their location is governed by the third index. We also discuss how the theory applies to finite lattices, with suitable homogeneity assumptions.

قيم البحث

اقرأ أيضاً

We outline a theory of symmetry protected topological phases of one-dimensional quantum walks. We assume spectral gaps around the symmetry-distinguished points +1 and -1, in which only discrete eigenvalues are allowed. The phase classification by int eger or binary indices extends the classification known for translation invariant systems in terms of their band structure. However, our theory requires no translation invariance whatsoever, and the indices we define in this general setting are invariant under arbitrary symmetric local perturbations, even those that cannot be continuously contracted to the identity. More precisely we define two indices for every walk, characterizing the behavior far to the right and far to the left, respectively. Their sum is a lower bound on the number of eigenstates at +1 and -1. For a translation invariant system the indices add up to zero, so one of them already characterizes the phase. By joining two bulk phases with different indices we get a walk in which the right and left indices no longer cancel, so the theory predicts bound states at +1 or -1. This is a rigorous statement of bulk-edge correspondence. The results also apply to the Hamiltonian case with a single gap at zero.
One-parameter family of discrete-time quantum-walk models on the square lattice, which includes the Grover-walk model as a special case, is analytically studied. Convergence in the long-time limit $t to infty$ of all joint moments of two components o f walkers pseudovelocity, $X_t/t$ and $Y_t/t$, is proved and the probability density of limit distribution is derived. Dependence of the two-dimensional limit density function on the parameter of quantum coin and initial four-component qudit of quantum walker is determined. Symmetry of limit distribution on a plane and localization around the origin are completely controlled. Comparison with numerical results of direct computer-simulations is also shown.
We study the simulation of the topological phases in three subsequent dimensions with quantum walks. We are mainly focused on the completion of a table for the protocols of the quantum walk that could simulate different family of the topological phas es in one, two dimensions and take the first initiatives to build necessary protocols for three-dimensional cases. We also highlight the possible boundary states that can be observed for each protocol in different dimensions and extract the conditions for their emergences or absences. To further enrich the simulation of the topological phenomenas, we include step-dependent coins in the evolution operators of the quantum walks. Consequently, this leads to step-dependency of the simulated topological phenomenas and their properties which in turn introduce dynamicality as a feature to simulated topological phases and boundary states. This dynamicality provides the step-number of the quantum walk as a mean to control and engineer the number of topological phases and boundary states, their populations, types and even occurrences.
Describing a particle in an external electromagnetic field is a basic task of quantum mechanics. The standard scheme for this is known as minimal coupling, and consists of replacing the momentum operators in the Hamiltonian by modified ones with an a dded vector potential. In lattice systems it is not so clear how to do this, because there is no continuous translation symmetry, and hence there are no momenta. Moreover, when time is also discrete, as in quantum walk systems, there is no Hamiltonian, only a unitary step operator. We present a unified framework of gauge theory for such discrete systems, keeping a close analogy to the continuum case. In particular, we show how to implement minimal coupling in a way that automatically guarantees unitary dynamics. The scheme works in any lattice dimension, for any number of internal degree of freedom, for walks that allow jumps to a finite neighborhood rather than to nearest neighbours, is naturally gauge invariant, and prepares possible extensions to non-abelian gauge groups.
We study a series of one-dimensional discrete-time quantum-walk models labeled by half integers $j=1/2, 1, 3/2, ...$, introduced by Miyazaki {it et al.}, each of which the walkers wave function has $2j+1$ components and hopping range at each time ste p is $2j$. In long-time limit the density functions of pseudovelocity-distributions are generally given by superposition of appropriately scaled Konnos density function. Since Konnos density function has a finite open support and it diverges at the boundaries of support, limit distribution of pseudovelocities in the $(2j+1)$-component model can have $2j+1$ pikes, when $2j+1$ is even. When $j$ becomes very large, however, we found that these pikes vanish and a universal and monotone convex structure appears around the origin in limit distributions. We discuss a possible route from quantum walks to classical diffusion associated with the $j to infty$ limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا