ترغب بنشر مسار تعليمي؟ اضغط هنا

Fe-based superconductors: seven years later

128   0   0.0 ( 0 )
 نشر من قبل Andrey Chubukov
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Iron-based superconductors were discovered seven years ago, in 2008. This short review summarizes what we learned about these materials over the last seven years, what are open questions, and what new physics we expect to extract from studies of this new class of high-temperature superconductors.



قيم البحث

اقرأ أيضاً

We study the dynamical quasiparticle scattering by spin and charge fluctuations in Fe-based pnictides within a five-orbital model with on-site interactions. The leading contribution to the scattering rate is calculated from the second-order diagrams with the polarization operator calculated in the random-phase approximation. We find one-particle scattering rates which are highly anisotropic on each Fermi surface sheet due to the momentum dependence of the spin susceptibility and the multi-orbital composition of each Fermi pocket. This fact, combined with the anisotropy of the effective mass, produces disparity between electrons and holes in conductivity, the Hall coefficient, and the Raman initial slope, in qualitative agreement with experimental data.
We study the spin resonance peak in recently discovered iron-based superconductors. The resonance peak observed in inelastic neutron scattering experiments agrees well with predicted results for the extended $s$-wave ($s_pm$) gap symmetry. Recent neu tron scattering measurements show that there is a disparity between longitudinal and transverse components of the dynamical spin susceptibility. Such breaking of the spin-rotational invariance in the spin-liquid phase can occur due to spin-orbit coupling. We study the role of the spin-orbit interaction in the multiorbital model for Fe-pnictides and show how it affects the spin resonance feature.
We present self-consistent calculations of the multi-gap structure measured in some Fe-based superconductors. These materials are known to have structural disorder in real space and a multi-gap structure due to the $3d$ Fe-orbitals contributing to a complex Fermi surface topology with hole and electron pockets. Different experiments identify three s-wave like superconducting gaps with a single critical temperature ($T_c$). We investigate the temperature dependence of these gaps by a multi-band Bogoliubov-deGennes theory at different pockets in the presence of effective hybridizations between some bands and an attractive temperature dependent intra-band interaction. We show that this approach reproduces the three observed gaps and single $T_c$ in different compounds of Ba$_{1-x}$K$_{x}$Fe$_2$As$_2$, providing some insights on the inter-band interactions.
409 - A.V. Chubukov , D. Efremov , 2008
We analyze antiferromagnetism and superconductivity in novel $Fe-$based superconductors within the itinerant model of small electron and hole pockets near $(0,0)$ and $(pi,pi)$. We argue that the effective interactions in both channels logarithmicall y flow towards the same values at low energies, {it i.e.}, antiferromagnetism and superconductivity must be treated on equal footings. The magnetic instability comes first for equal sizes of the two pockets, but looses to superconductivity upon doping. The superconducting gap has no nodes, but changes sign between the two Fermi surfaces (extended s-wave symmetry). We argue that the $T$ dependencies of the spin susceptibility and NMR relaxation rate for such state are exponential only at very low $T$, and can be well fitted by power-laws over a wide $T$ range below $T_c$.
A brief review of optical and Raman studies on the Fe-based superconductors is given, with special emphasis on the competing phenomenon in this system. Optical investigations on ReFeAsO (Re=rare-earth element) and AFe$_2$As$_2$ (A=alkaline-earth meta l) families provide clear evidence for the gap formation in the broken symmetry states, including the partial gaps in the spin-density wave states of parent compounds, and the pairing gaps in the superconducting states for doped compounds. Especially, the superconducting gap has an s-wave pairing lineshape in hole-doped BaFe$_2$As$_2$. Optical phonons at zone center detected by Raman and infrared techniques are classified for several Fe-based compounds. Related issues, such as the electron-phonon coupling and the effect of spin-density wave and superconducting transitions on phonons, are also discussed. Meanwhile, open questions including the emph{T}-dependent mid-infrared peak at 0.6-0.7 eV, electronic correlation, and the similarities/differences between high-Tc cuprates and Fe-based superconductors are also briefly discussed. Important results from other experimental probes are compared with optical data to better understand the spin-density wave properties, the superconductivity, and the multi-band character in Fe-based compounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا