ﻻ يوجد ملخص باللغة العربية
We report on 230 GHz (1.3 mm) VLBI observations of M87 with the Event Horizon Telescope using antennas on Mauna Kea in Hawaii, Mt. Graham in Arizona and Cedar Flat in California. For the first time, we have acquired 230 GHz VLBI interferometric phase information on M87 through measurement of closure phase on the triangle of long baselines. Most of the measured closure phases are consistent with 0$^{circ}$ as expected by physically-motivated models for 230 GHz structure such as jet models and accretion disk models. The brightness temperature of the event-horizon-scale structure is $sim 1 times 10^{10}$ K derived from the compact flux density of $sim 1$ Jy and the angular size of $sim 40 $ $rm mu$as $sim$ 5.5 $R_{{rm s}}$, which is broadly consistent with the peak brightness of the radio cores at 1-86 GHz located within $sim 10^2$ $R_{{rm s}}$. Our observations occurred in the middle of an enhancement in very-high-energy (VHE) $rm gamma$-ray flux, presumably originating in the vicinity of the central black hole. Our measurements, combined with results of multi-wavelength observations, favor a scenario in which the VHE region has an extended size of $sim$20-60 $R_{{rm s}}$.
We report on the detailed radio status of the M87 jet during the Very-High-Energy (VHE) gamma-ray flaring event in April 2010, obtained from high-resolution, multi-frequency, phase-referencing VLBA observations. We especially focus on the properties
We report our intensive radio monitoring observations of the jet in M87 with the VLBI Exploration of Radio Astrometry (VERA) and the European VLBI Network (EVN) from February 2011 to October 2012, together with contemporaneous high-energy gamma-ray l
The nearby radio galaxy M87 offers a unique opportunity for exploring the connection between gamma-ray production and jet formation at an unprecedented linear resolution. However, the origin and location of the gamma-rays in this source is still elus
Event Horizon Telescope (EHT) observations at 230 GHz have now imaged polarized emission around the supermassive black hole in M87 on event-horizon scales. This polarized synchrotron radiation probes the structure of magnetic fields and the plasma pr
The Galactic center is an interesting region for high-energy (0.1-100 GeV) and very-high-energy (E > 100 GeV) gamma-ray observations. Potential sources of GeV/TeV gamma-ray emission have been suggested, e.g., the accretion of matter onto the supermas