ﻻ يوجد ملخص باللغة العربية
We report an Fe $K$-edge resonant inelastic X-ray scattering (RIXS) study of K$_{0.83}$Fe$_{1.53}$Se$_2$. This material is an insulator, unlike many parent compounds of iron-based superconductors. We found a sharp excitation around 1 eV, which is resonantly enhanced when the incident photon energy is tuned near the pre-edge region of the absorption spectrum. The spectral weight and line shape of this excitation exhibit clear momentum dependence. In addition, we observe momentum-independent broad interband transitions at higher excitation energy of 3-7 eV. Calculations based on a 70 band $dp$ orbital model, using a moderate $U_{rm eff}approx 2.5$ eV, indicate that the $sim$1 eV feature originates from the correlated Fe 3$d$ electrons, with a dominant $d_{xz}$ and $d_{yz}$ orbital character. We find that a moderate $U_{rm eff}$ yields a satisfying agreement with the experimental spectra, suggesting that the electron correlations in the insulating and metallic iron based superconductors are comparable.
We report an infrared spectroscopy study on K$_{0.83}$Fe$_{1.53}$Se$_2$, a semiconducting parent compound of the new iron-selenide system. The major spectral features are found to be distinctly different from all other Fe-based superconducting system
We report a resonant inelastic x-ray scattering study of the dispersion relations of charge transfer excitations in insulating La$_2$CuO$_4$. These data reveal two peaks, both of which show two-dimensional characteristics. The lowest energy excitatio
The study of elementary bosonic excitations is essential toward a complete description of quantum electronic solids. In this context, resonant inelastic X-ray scattering (RIXS) has recently risen to becoming a versatile probe of electronic excitation
We have performed resonant inelastic x-ray scattering (RIXS) near the Cu-K edge on cuprate superconductors La(2-x)Sr(x)CuO(4), La(2-x)Ba(x)CuO(4), La(2-x)Sr(x)Cu(1-y)Fe(y)O(4) and Bi(1.76)Pb(0.35)Sr(1.89)CuO(6+d), covering underdoped to heavily overd
Resonant X-ray scattering experiments on high-temperature superconductors and related cuprates have revealed the presence of intense paramagnon scattering at high excitation energies, of the order of several hundred meV. The excitation energies appea