ترغب بنشر مسار تعليمي؟ اضغط هنا

Resonant inelastic X-ray scattering study of intra-band charge excitations in hole-doped high-Tc cuprates

266   0   0.0 ( 0 )
 نشر من قبل Shuichi Wakimoto
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed resonant inelastic x-ray scattering (RIXS) near the Cu-K edge on cuprate superconductors La(2-x)Sr(x)CuO(4), La(2-x)Ba(x)CuO(4), La(2-x)Sr(x)Cu(1-y)Fe(y)O(4) and Bi(1.76)Pb(0.35)Sr(1.89)CuO(6+d), covering underdoped to heavily overdoped regime and focusing on charge excitations inside the charge-transfer gap. RIXS measurements of the 214 systems with Ei = 8.993 keV have revealed that the RIXS intensity at 1 eV energy transfer has a minimum at (0,0) and maxima at (0.4pi, 0) and $(0, 0.4pi) for all doping points regardless of the stripe ordered state, suggesting that the corresponding structure is not directly related to stripe order. Measurements with Ei = 9.003 keV on metallic La(1.7)Sr(0.3)CuO(4) and Bi(1.76)Pb(0.35)Sr(1.89)CuO(6+d) exhibit a dispersive intra-band excitation below 4 eV, similar to that observed in the electron-doped Nd(1.85)Ce(0.15)CuO(4). This is the first observation of a dispersive intra-band excitation in a hole doped system, evidencing that both electron and hole doped systems have a similar dynamical charge correlation function.



قيم البحث

اقرأ أيضاً

484 - K. Ishii , M. Hoesch , T. Inami 2007
We report a Cu K-edge resonant inelastic x-ray scattering (RIXS) study of high-Tc cuprates. Momentum-resolved charge excitations in the CuO2 plane are examined from parent Mott insulators to carrier-doped superconductors. The Mott gap excitation in u ndoped insulators is found to commonly show a larger dispersion along the [pi,pi] direction than the [pi,0] direction. On the other hand, the resonance condition displays material dependence. Upon hole doping, the dispersion of the Mott gap excitation becomes weaker and an intraband excitation appears as a continuum intensity below the gap at the same time. In the case of electron doping, the Mott gap excitation is prominent at the zone center and a dispersive intraband excitation is observed at finite momentum transfer.
We report a resonant inelastic x-ray scattering study of the dispersion relations of charge transfer excitations in insulating La$_2$CuO$_4$. These data reveal two peaks, both of which show two-dimensional characteristics. The lowest energy excitatio n has a gap energy of $sim 2.2$ eV at the zone center, and a dispersion of $sim 1$ eV. The spectral weight of this mode becomes dramatically smaller around ($pi$, $pi$). The second peak shows a smaller dispersion ($sim 0.5$ eV) with a zone-center energy of $sim 3.9$ eV. We argue that these are both highly dispersive exciton modes damped by the presence of the electron-hole continuum.
We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa2Cu3O6+x over a wide range of doping levels (0.1 < x < 1 ). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x. These findings demonstrate that the largest fraction of the spin-flip RIXS profiles in doped cuprates arises from magnetic collective modes, rather than from incoherent particle-hole excitations as recently suggested theoretically [Benjamin et al. Phys. Rev. Lett. 112, 247002(2014)]. Implications for the theoretical description of the electron system in the cuprates are discussed.
Measurements of spin excitations are essential for an understanding of spin-mediated pairing for superconductivity; and resonant inelastic X-ray scattering (RIXS) provides a considerable opportunity to probe high-energy spin excitations. However, whe ther RIXS correctly measures the collective spin excitations of doped superconducting cuprates remains under debate. Here we demonstrate distinct Raman- and fluorescence-like RIXS excitations of Bi$_{1.5}$Pb$_{0.6}$Sr$_{1.54}$CaCu$_{2}$O$_{8+{delta}}$ in the mid-infrared energy region. Combining photon-energy and momentum dependent RIXS measurements with theoretical calculations using exact diagonalization provides conclusive evidence that the Raman-like RIXS excitations correspond to collective spin excitations, which are magnons in the undoped Mott insulators and evolve into paramagnons in doped superconducting compounds. In contrast, the fluorescence-like shifts are due primarily to the continuum of particle-hole excitations in the charge channel. Our results show that under the proper experimental conditions RIXS indeed can be used to probe paramagnons in doped high-$T_c$ cuprate superconductors.
We present a resonant inelastic x-ray scattering (RIXS) study of spin and charge excitations in overdoped La1.77Sr0.23CuO4 along two high-symmetry directions. The line shape of these excitations is analyzed and they are shown to be highly overdamped. Their spectral weight and damping are found to be strongly momentum dependent. Qualitative agreement between these observations and a calculated RPA susceptibility is obtained for this overdoped compound, implying that a significant contribution to the RIXS signal stems from a continuum of charge excitations. Furthermore, this suggests that the spin-excitations in the overdoped regime can be captured qualitatively by an itinerant picture. Our calculations also predict a new low-energy spin excitation branch to exist along the nodal direction near the zone center. With the energy resolution of the present experiment, this branch is not resolvable but we show that next generation of high-resolution spectrometers will be able to test this prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا