ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffusion of Chiral Janus Particles in a Sinusoidal Channel

108   0   0.0 ( 0 )
 نشر من قبل Yunyun Li
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the transport diffusivity of artificial microswimmers, a.k.a. Janus particles, moving in a sinusoidal channel in the absence of external biases. Their diffusion constant turns out to be quite sensitive to the self-propulsion mechanism and the geometry of the channel compartments. Our analysis thus suggests how to best control the diffusion of active Brownian motion in confined geometries.



قيم البحث

اقرأ أيضاً

The diffusion of an artificial active particle in a two-dimensional periodic pattern of stationary convection cells is investigated by means of extensive numerical simulations. In the limit of large Peclet numbers, i.e., for self-propulsion speeds be low a certain depinning threshold and weak roto-translational fluctuations, the particle undergoes asymptotic normal diffusion with diffusion constant proportional to the square root of its diffusion constant at zero flow. Chirality effects in the propulsion mechanism, modeled here by a tunable applied torque, favors particles jumping between adjacent convection rolls. Roll jumping is signaled by an excess diffusion peak, which appears to separate two distinct active diffusion regimes for low and high chirality. A qualitative interpretation of our simulation results is proposed as a first step toward a fully analytical study of this phenomenon.
257 - Chiu Fan Lee 2013
I study the confinement-induced aggregation phenomenon in a minimal model of self-propelled particles inside a channel. Starting from first principles, I derive a set of equations that govern the density profile of such a system at the steady-state, and calculate analytically how the aggregation at the walls varies with the physical parameters of the system. I also investigate how the gradient of the particle density varies if the inside of the channel is partitioned into two regions within which the active particles exhibit distinct levels of fluctuations in their directions of travel.
We numerically simulate the transport of elliptic Janus particles along narrow two-dimensional channels with reflecting walls. The self-propulsion velocity of the particle is oriented along either their major (prolate) or minor axis (oblate). In smoo th channels, we observe long diffusion transients: ballistic for prolate particles and zero-diffusion for oblate particles. Placed in a rough channel, prolate particles tend to drift against an applied drive by tumbling over the wall protrusions; for appropriate aspect ratios, the modulus of their negative mobility grows exceedingly large (giant negative mobility). This suggests that a small external drive suffices to efficiently direct self-propulsion of rod-like Janus particles in rough channels.
In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of t he active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.
We describe colloidal Janus particles with metallic and dielectric faces that swim vigorously when illuminated by defocused optical tweezers without consuming any chemical fuel. Rather than wandering randomly, these optically-activated colloidal swim mers circulate back and forth through the beam of light, tracing out sinuous rosette patterns. We propose a model for this mode of light-activated transport that accounts for the observed behavior through a combination of self-thermophoresis and optically-induced torque. In the deterministic limit, this model yields trajectories that resemble rosette curves known as hypotrochoids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا