ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffusive Dynamics of Water inside Hydrophobic Carbon Micropores Studied by Neutron Spectroscopy and Molecular Dynamics Simulation

105   0   0.0 ( 0 )
 نشر من قبل Souleymane Diallo
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

When water molecules are confined to nanoscale spacings, such as in the nanometer size pores of activated carbon fiber (ACF), their freezing point gets suppressed down to very low temperatures ($sim$ 150 K), leading to a metastable liquid state with remarkable physical properties. We have investigated the ambient pressure diffusive dynamics of water in microporous Kynoltexttrademark ACF-10 (average pore size $sim$11.6 {AA}, with primarily slit-like pores) from temperature $T=$ 280 K in its stable liquid state down to $T=$ 230 K into the metastable supercooled phase. The observed characteristic relaxation times and diffusion coefficients are found to be respectively higher and lower than those in bulk water, indicating a slowing down of the water mobility with decreasing temperature. The observed temperature-dependent average relaxation time $<tau>$ when compared to previous findings indicate that it is the size of the confining pores - not their shape - that primarily affects the dynamics of water for pore sizes larger than 10 {AA}. The experimental observations are compared to complementary molecular dynamics simulations of a model system, in which we studied the diffusion of water within the 11.6 {AA} gap of two parallel graphene sheets. We find generally a reasonable agreement between the observed and calculated relaxation times at the low momentum transfer $Q$ ($Qle 0.9$ AA${^{-1}}$). At high $Q$ however, where localized dynamics becomes relevant, this ideal system does not satisfactorily reproduce the measurements. The best agreement is obtained for the diffusion parameter $D$ associated with the hydrogen-site when a representative stretched exponential function, rather than the standard bi-modal exponential model, is used to parameterize the self-correlation function $I(Q,t)$.



قيم البحث

اقرأ أيضاً

Forced detachment of a single polymer chain, strongly-adsorbed on a solid substrate, is investigated by two complementary methods: a coarse-grained analytical dynamical model, based on the Onsager stochastic equation, and Molecular Dynamics (MD) simu lations with Langevin thermostat. The suggested approach makes it possible to go beyond the limitations of the conventional Bell-Evans model. We observe a series of characteristic force spikes when the pulling force is measured against the cantilever displacement during detachment at constant velocity $v_c$ (displacement control mode) and find that the average magnitude of this force increases as $v_c$ grows. The probability distributions of the pulling force and the end-monomer distance from the surface at the moment of final detachment are investigated for different adsorption energy $epsilon$ and pulling velocity $v_c$. Our extensive MD-simulations validate and support the main theoretical findings. Moreover, the simulation reveals a novel behavior: for a strong-friction and massive cantilever the force spikes pattern is smeared out at large $v_c$. As a challenging task for experimental bio-polymers sequencing in future we suggest the fabrication of stiff, super-light, nanometer-sized AFM probe.
By using molecular dynamics simulation, formation mechanisms of amorphous carbon in particular sp${}^3$ rich structure was researched. The problem that reactive empirical bond order potential cannot represent amorphous carbon properly was cleared in the transition process from graphite to diamond by high pressure and the deposition process of amorphous carbon thin films. Moreover, the new potential model which is based on electron distribution simplified as a point charge was developed by using downfolding method. As a result, the molecular dynamics simulation with the new potential could demonstrate the transition from graphite to diamond at the pressure of 15 GPa corresponding to experiment and the deposition of sp${}^3$ rich amorphous carbon.
We have studied the collective short wavelength dynamics in deuterated DMPC bilayers by inelastic neutron scattering. The corresponding dispersion relation $hbaromega$(Q) is presented for the gel and fluid phase of this model system. The temperature dependence of the inelastic excitations indicates a phase coexistence between the two phases over a broad range and leads to a different assignment of excitations than that reported in a preceding inelastic x-ray scattering study [Phys. Rev. Lett. {bf 86}, 740 (2001)]. As a consequence, we find that the minimum in the dispersion relation is actually deeper in the gel than in the fluid phase. Finally, we can clearly identify an additional non-dispersive (optical) mode predicted by Molecular Dynamics (MD) simulations [Phys. Rev. Lett. {bf 87}, 238101 (2001)].
In this book chapter we review plasma crystals in the laboratory, in the interior of white dwarf stars, and in the crust of neutron stars. We describe a molecular dynamics formalism and show results for many neutron star crust properties including ph ase separation upon freezing, diffusion, breaking strain, shear viscosity and dynamics response of nuclear pasta. We end with a summary and discuss open questions and challenges for the future.
Endothelial cells are responsible for the formation of the capillary blood vessel network. We describe a system of endothelial cells by means of two-dimensional molecular dynamics simulations of point-like particles. Cells motion is governed by the g radient of the concentration of a chemical substance that they produce (chemotaxis). The typical time of degradation of the chemical substance introduces a characteristic length in the system. We show that point-like model cells form network resembling structures tuned by this characteristic length, before collapsing altogether. Successively, we improve the non-realistic point-like model cells by introducing an isotropic strong repulsive force between them and a velocity dependent force mimicking the observed peculiarity of endothelial cells to preserve the direction of their motion (persistence). This more realistic model does not show a clear network formation. We ascribe this partial fault in reproducing the experiments to the static geometry of our model cells that, in reality, change their shapes by elongating toward neighboring cells.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا