ﻻ يوجد ملخص باللغة العربية
We report the observation of the de Haas-van Alphen effect in IrTe2 measured using torque magnetometry at low temperatures down to 0.4 K and in high magnetic fields up to 33T. IrTe2 undergoes a major structural transition around 283 K due to the formation of planes of Ir and Te dimers that cut diagonally through the lattice planes, with its electronic structure predicted to change significantly from a layered system with predominantly three-dimensional character to a tilted quasi-two dimensional Fermi surface. Quantum oscillations provide direct confirmation of this unusual tilted Fermi surface and also reveal very light quasiparticle masses (less than 1 me), with no significant enhancement due to electronic correlations. We find good agreement between the angular dependence of the observed and calculated de Haas-van Alphen frequencies, taking into account the contribution of different structural domains that form while cooling IrTe2.
We report extensive measurements of quantum oscillations in the normal state of the Fe-based superconductor LaFePO, (Tc ~ 6 K) using low temperature torque magnetometry and transport in high static magnetic fields (45 T). We find that the Fermi surfa
We have completely determined the Fermi surface in KFe$_2$As$_2$ via de Haas-van Alphen (dHvA) measurements. Fundamental frequencies $epsilon$, $alpha$, $zeta$, and $beta$ are observed in KFe$_2$As$_2$. The first one is attributed to a hole cylinder
Reconstruction of the Fermi surface of high-temperature superconducting cuprates in the pseudogap state is analyzed within nearly exactly solvable model of the pseudogap state, induced by short-range order fluctuations of antiferromagnetic (AFM, spin
In this paper we explore whether the quantum oscillation signals recently observed in ortho-II YBa$_2$Cu$_3$O$_{6.5}$ may be explained by conventional density functional band-structure theory. Our calculations show that the Fermi surface of YBa$_2$Cu
Here, we present a de Haas-van Alphen (dHvA) effect1 study on the newly discovered LaFeAsO1-xFx compounds2,3 in order to unveil the topography of the Fermi surface associated with their antiferromagnetic and superconducting phases, which is essential