ﻻ يوجد ملخص باللغة العربية
Here, we present a de Haas-van Alphen (dHvA) effect1 study on the newly discovered LaFeAsO1-xFx compounds2,3 in order to unveil the topography of the Fermi surface associated with their antiferromagnetic and superconducting phases, which is essential for understanding their magnetism, pairing symmetry and superconducting mechanism. Calculations 4 and surface-sensitive measurements 5,6,7 provided early guidance, but lead to contradictory results, generating a need for a direct experimental probe of their bulk Fermi surface. In antiferromagnetic LaFeAsO1-xFx 8,9 we observe a complex pattern in the Fourier spectrum of the oscillatory component superimposed onto the magnetic torque signal revealing a reconstructed Fermi surface, whose geometry is not fully described by band structure calculations. Surprisingly, several of the same frequencies, or Fermi surface cross-sectional areas, are also observed in superconducting LaFeAsO1-xFx (with a superconducting transition temperature Tc ~ 15 K). Although one could attribute this to inhomogeneous F doping, the corresponding effective masses are largely enhanced with respect to those of the antiferromagnetic compound. Instead, this implies the microscopic coexistence of superconductivity and antiferromagnetism on the same Fermi surface in the underdoped region of the phase diagram of the LaFeAsO1-xFx series. Thus, the dHvA-effect reveals a more complex Fermi surface topography than that predicted by band structure calculations4 upon which the currently proposed superconducting pairing scenarios10,11,12,13 are based, which could be at the origin of their higher Tcs when compared to their phosphide analogs.
We have completely determined the Fermi surface in KFe$_2$As$_2$ via de Haas-van Alphen (dHvA) measurements. Fundamental frequencies $epsilon$, $alpha$, $zeta$, and $beta$ are observed in KFe$_2$As$_2$. The first one is attributed to a hole cylinder
We report measurements of the de Haas-van Alphen effect for single crystals of MgB$_2$, in magnetic fields up to 32 Tesla. In contrast to our earlier work, dHvA orbits from all four sheets of the Fermi surface were detected. Our results are in good o
We report on a band structure calculation and de Haas-van Alphen measurements of KFe$_2$As$_2$. Three cylindrical Fermi surfaces are found. Effective masses of electrons range from 6 to 18$m_e$, $m_e$ being the free electron mass. Remarkable discrepa
The three-dimensional Fermi surface morphology of superconducting BaFe_2(As_0.37}P_0.63)_2 with T_c=9K, is determined using the de Haas-van Alphen effect (dHvA). The inner electron pocket has a similar area and k_z interplane warping to the observed
We report observations of quantum oscillations in single crystals of the high temperature superconductor MgB_2. Three de Haas-van Alphen frequencies are clearly resolved. Comparison with band structure calculations strongly suggests that two of these