ﻻ يوجد ملخص باللغة العربية
We study the asymptotic behaviour of solutions of the fourth Pain-leve equation as the independent variable goes to infinity in its space of (complex) initial values, which is a generalisation of phase space described by Okamoto. We show that the limit set of each solution is compact and connected and, moreover, that any non-special solution has an infinite number of poles and infinite number of zeroes.
We study the solutions of the second Painleve equation in the space of initial conditions first constructed by Okamoto, in the limit as the independent variable, x, goes to infinity. Simultaneously, we study solutions of the related equation known as
We consider the generalized Painleve--Ince equation, begin{equation*} ddot{x}+alpha xdot{x}+beta x^{3}=0 end{equation*} and we perform a detailed study in terms of symmetry analysis and of the singularity analysis. When the free parameters are relate
We construct the initial-value space of a $q$-discrete first Painleve equation explicitly and describe the behaviours of its solutions $w(n)$ in this space as $ntoinfty$, with particular attention paid to neighbourhoods of exceptional lines and irred
The classical Painleve equations are so well known that it may come as a surprise to learn that the asymptotic description of its solutions remains incomplete. The problem lies mainly with the description of families of solutions in the complex domai
We construct a solution of an analog of the Schr{o}dinger equation for the Hamiltonian $ H_I (z, t, q_1, q_2, p_1, p_2) $ corresponding to the second equation $P_1^2$ in the Painleve I hierarchy. This solution is produced by an explicit change of var