ﻻ يوجد ملخص باللغة العربية
We study the solutions of the second Painleve equation in the space of initial conditions first constructed by Okamoto, in the limit as the independent variable, x, goes to infinity. Simultaneously, we study solutions of the related equation known as the thirty-fourth Painleve equation. By considering degenerate cases of the autonomous flow, we recover the known special solutions, which are either rational functions or expressible in terms of Airy functions. We show that the solutions that do not vanish at infinity possess an infinite number of poles. An essential element of our construction is the proof that the union of exceptional lines is a repellor for the dynamics in Okamotos space. Moreover, we show that the limit set of the solutions exists and is compact and connected.
We study the asymptotic behaviour of solutions of the fourth Pain-leve equation as the independent variable goes to infinity in its space of (complex) initial values, which is a generalisation of phase space described by Okamoto. We show that the lim
We consider the generalized Painleve--Ince equation, begin{equation*} ddot{x}+alpha xdot{x}+beta x^{3}=0 end{equation*} and we perform a detailed study in terms of symmetry analysis and of the singularity analysis. When the free parameters are relate
We construct the initial-value space of a $q$-discrete first Painleve equation explicitly and describe the behaviours of its solutions $w(n)$ in this space as $ntoinfty$, with particular attention paid to neighbourhoods of exceptional lines and irred
Iorgov, Lisovyy, and Teschner established a connection between isomonodromic deformation of linear differential equations and Liouville conformal field theory at $c=1$. In this paper we present a $q$ analog of their construction. We show that the gen
A theoretical foundation for a generalization of the elliptic difference Painleve equation to higher dimensions is provided in the framework of birational Weyl group action on the space of point configurations in general position in a projective spac