ترغب بنشر مسار تعليمي؟ اضغط هنا

The $ u^2$GC Simulations : Quantifying the Dark Side of the Universe in the Planck Cosmology

65   0   0.0 ( 0 )
 نشر من قبل Tomoaki Ishiyama
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the evolution of dark matter halos in six large cosmological N-body simulations, called the $ u^2$GC (New Numerical Galaxy Catalog) simulations on the basis of the LCDM cosmology consistent with observational results obtained by the Planck satellite. The largest simulation consists of $8192^3$ (550 billion) dark matter particles in a box of $1.12 , h^{-1} rm Gpc$ (a mass resolution of $2.20 times 10^{8} , h^{-1} M_{odot}$). Among simulations utilizing boxes larger than $1 , h^{-1} rm Gpc$, our simulation yields the highest resolution simulation that has ever been achieved. A $ u^2$GC simulation with the smallest box consists of eight billions particles in a box of $70 , h^{-1} rm Mpc$ (a mass resolution of $3.44 times 10^{6} , h^{-1} M_{odot}$). These simulations can follow the evolution of halos over masses of eight orders of magnitude, from small dwarf galaxies to massive clusters. Using the unprecedentedly high resolution and powerful statistics of the $ u^2$GC simulations, we provide statistical results of the halo mass function, mass accretion rate, formation redshift, and merger statistics, and present accurate fitting functions for the Planck cosmology. By combining the $ u^2$GC simulations with our new semi-analytic galaxy formation model, we are able to prepare mock catalogs of galaxies and active galactic nuclei, which will be made publicly available in the near future.

قيم البحث

اقرأ أيضاً

We use the latest Planck constraints, and in particular constraints on the derived parameters (Hubble constant and age of the Universe) for the local universe and compare them with local measurements of the same quantities. We propose a way to quanti fy whether cosmological parameters constraints from two different experiments are in tension or not. Our statistic, T, is an evidence ratio and therefore can be interpreted with the widely used Jeffreys scale. We find that in the framework of the LCDM model, the Planck inferred two dimensional, joint, posterior distribution for the Hubble constant and age of the Universe is in strong tension with the local measurements; the odds being ~ 1:50. We explore several possibilities for explaining this tension and examine the consequences both in terms of unknown errors and deviations from the LCDM model. In some one-parameter LCDM model extensions, tension is reduced whereas in other extensions, tension is instead increased. In particular, small total neutrino masses are favored and a total neutrino mass above 0.15 eV makes the tension highly significant (odds ~ 1:150). A consequence of accepting this interpretation of the tension is that the degenerate neutrino hierarchy is highly disfavoured by cosmological data and the direct hierarchy is slightly favored over the inverse.
We present a review of the current state of the art of cosmological dark matter simulations, with particular emphasis on the implications for dark matter detection efforts and studies of dark energy. This review is intended both for particle physicis ts, who may find the cosmological simulation literature opaque or confusing, and for astro-physicists, who may not be familiar with the role of simulations for observational and experimental probes of dark matter and dark energy. Our work is complementary to the contribution by M. Baldi in this issue, which focuses on the treatment of dark energy and cosmic acceleration in dedicated N-body simulations. Truly massive dark matter-only simulations are being conducted on national supercomputing centers, employing from several billion to over half a trillion particles to simulate the formation and evolution of cosmologically representative volumes (cosmic scale) or to zoom in on individual halos (cluster and galactic scale). These simulations cost millions of core-hours, require tens to hundreds of terabytes of memory, and use up to petabytes of disk storage. The field is quite internationally diverse, with top simulations having been run in China, France, Germany, Korea, Spain, and the USA. Predictions from such simulations touch on almost every aspect of dark matter and dark energy studies, and we give a comprehensive overview of this connection. We also discuss the limitations of the cold and collisionless DM-only approach, and describe in some detail efforts to include different particle physics as well as baryonic physics in cosmological galaxy formation simulations, including a discussion of recent results highlighting how the distribution of dark matter in halos may be altered. We end with an outlook for the next decade, presenting our view of how the field can be expected to progress. (abridged)
Probing the growth of structure from the epoch of hydrogen recombination to the formation of the first stars and galaxies is one of the most important uncharted areas of observational cosmology. Far-IR spectroscopy covering $lambda$ 100-500 microns f rom space, and narrow partial transmission atmospheric bands available from the ground, opens up the possibility of probing the molecular hydrogen and metal fine-structure lines from primordial clouds from which the first stars and galaxies formed at 6 < z $<$ 15. Building on Spitzer observations of unexpectedly powerful H2 emission from shocks, we argue that next-generation far-IR space telescopes may open a new window into the main cloud cooling processes and feedback effects which characterized this vital, but unexplored epoch. Without this window, we are essential blind to the dominant cloud cooling which inevitably led to star formation and cosmic reionization.
We make detailed theoretical predictions for the assembly properties of the Local Group (LG) in the standard LambdaCDM cosmological model. We use three cosmological N-body dark matter simulations from the CLUES project, which are designed to reproduc e the main dynamical features of the matter distribution down to the scale of a few Mpc around the LG. Additionally, we use the results of an unconstrained simulation with a sixty times larger volume to calibrate the influence of cosmic variance. We characterize the Mass Aggregation History (MAH) for each halo by three characteristic times, the formation, assembly and last major merger times. A major merger is defined by a minimal mass ratio of 10:1. We find that the three LGs share a similar MAH with formation and last major merger epochs placed on average approx 10 - 12 Gyr ago. Between 12% and 17% of the halos in the mass range 5 x 10^11 Msol/h < M_h < 5 x 10^12 Msol/h have a similar MAH. In a set of pairs of halos within the same mass range, a fraction of 1% to 3% share similar formation properties as both halos in the simulated LG. An unsolved question posed by our results is the dynamical origin of the MAH of the LGs. The isolation criteria commonly used to define LG-like halos in unconstrained simulations do not narrow down the halo population into a set with quiet MAHs, nor does a further constraint to reside in a low density environment. The quiet MAH of the LGs provides a favorable environment for the formation of disk galaxies like the Milky Way and M31. The timing for the beginning of the last major merger in the Milky Way dark matter halo matches with the gas rich merger origin for the thick component in the galactic disk. Our results support the view that the specific large and mid scale environment around the Local Group play a critical role in shaping its MAH and hence its baryonic structure at present.
We study halo mass functions with high-resolution $N$-body simulations under a $Lambda$CDM cosmology. Our simulations adopt the cosmological model that is consistent with recent measurements of the cosmic microwave backgrounds with the ${it Planck}$ satellite. We calibrate the halo mass functions for $10^{8.5} lower.5exhbox{$; buildrel < over sim ;$} M_mathrm{vir} / (h^{-1}M_odot) lower.5exhbox{$; buildrel < over sim ;$} 10^{15.0 - 0.45 , z}$, where $M_mathrm{vir}$ is the virial spherical overdensity mass and redshift $z$ ranges from $0$ to $7$. The halo mass function in our simulations can be fitted by a four-parameter model over a wide range of halo masses and redshifts, while we require some redshift evolution of the fitting parameters. Our new fitting formula of the mass function has a 5%-level precision except for the highest masses at $zle 7$. Our model predicts that the analytic prediction in Sheth $&$ Tormen would overestimate the halo abundance at $z=6$ with $M_mathrm{vir} = 10^{8.5-10}, h^{-1}M_odot$ by $20-30%$. Our calibrated halo mass function provides a baseline model to constrain warm dark matter (WDM) by high-$z$ galaxy number counts. We compare a cumulative luminosity function of galaxies at $z=6$ with the total halo abundance based on our model and a recently proposed WDM correction. We find that WDM with its mass lighter than $2.71, mathrm{keV}$ is incompatible with the observed galaxy number density at a $2sigma$ confidence level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا