ﻻ يوجد ملخص باللغة العربية
An inequality refining the lower bound for a periodic (Breitenberger) uncertainty constant is proved for a wide class of functions. A connection of uncertainty constants for periodic and non-periodic functions is extended to this class. A particular minimization problem for a non-periodic (Heisenberg) uncertainty constant is studied.
We study the uncertainty principles related to the generalized Logan problem in $mathbb{R}^{d}$. Our main result provides the complete solution of the following problem: for a fixed $min mathbb{Z}_{+}$, find [ sup{|x|colon (-1)^{m}f(x)>0}cdot sup {|x
A classical inequality, which is known for families of monotone functions, is generalized to a larger class of families of measurable functions. Moreover we characterize all the families of functions for which the equality holds. We apply this result to a problem arising from probability theory.
Consider the trilinear form for twisted convolution on $mathbb{R}^{2d}$: begin{equation*} mathcal{T}_t(mathbf{f}):=iint f_1(x)f_2(y)f_3(x+y)e^{itsigma(x,y)}dxdy,end{equation*} where $sigma$ is a symplectic form and $t$ is a real-valued parameter. I
One may define a trilinear convolution form on the sphere involving two functions on the sphere and a monotonic function on the interval $[-1,1]$. A symmetrization inequality of Baernstein and Taylor states that this form is maximized when the two fu
We show how Turans inequality $P_n(x)^2-P_{n-1}(x)P_{n+1}(x)geq 0$ for Legendre polynomials and related inequalities can be proven by means of a computer procedure. The use of this procedure simplifies the daily work with inequalities. For instance,