ﻻ يوجد ملخص باللغة العربية
We show how Turans inequality $P_n(x)^2-P_{n-1}(x)P_{n+1}(x)geq 0$ for Legendre polynomials and related inequalities can be proven by means of a computer procedure. The use of this procedure simplifies the daily work with inequalities. For instance, we have found the stronger inequality $|x|P_n(x)^2-P_{n-1}(x)P_{n+1}(x)geq 0$, $-1leq xleq 1$, effortlessly with the aid of our method.
A simple proof of the weighted two variable geometric-arithmetic a mean inequality based on one given earlier valid only for integer weights
Changs lemma is a useful tool in additive combinatorics and the analysis of Boolean functions. Here we give an elementary proof using entropy. The constant we obtain is tight, and we give a slight improvement in the case where the variables are highly biased.
This paper is intended to give a characterization of the optimality case in Nashs inequality, based on methods of nonlinear analysis for elliptic equations and techniques of the calculus of variations. By embedding the problem into a family of Gaglia
We give a direct analytic proof of the classical Boundary Harnack inequality for solutions to linear uniformly elliptic equations in either divergence or non-divergence form.
Consider the trilinear form for twisted convolution on $mathbb{R}^{2d}$: begin{equation*} mathcal{T}_t(mathbf{f}):=iint f_1(x)f_2(y)f_3(x+y)e^{itsigma(x,y)}dxdy,end{equation*} where $sigma$ is a symplectic form and $t$ is a real-valued parameter. I