ترغب بنشر مسار تعليمي؟ اضغط هنا

Growth of Ca$_2$MnO$_4$ Ruddlesden-Popper structured thin films using Combinatorial Substrate Epitaxy

154   0   0.0 ( 0 )
 نشر من قبل W. Prellier
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The local epitaxial growth of pulsed laser deposited Ca$_2$MnO$_4$ films on polycrystalline spark plasma sintered Sr$_2$TiO$_4$ substrates was investigated to determine phase formation and preferred epitaxial orientation relationships ($ORs$) for isostructural Ruddlesden-Popper (RP) heteroepitaxy, further developing the high-throughput synthetic approach called Combinatorial Substrate Epitaxy (CSE). Both grazing incidence X-ray diffraction and electron backscatter diffraction (EBSD) patterns of the film and substrate were indexable as single-phase RP-structured compounds. The optimal growth temperature (between 650 $^{circ}$C and 800 $^{circ}$C) was found to be 750 $^{circ}$C using the maximum value of the average image quality (IQ) of the backscattered diffraction patterns. Films grew in a grain-over-grain pattern such that each Ca$_2$MnO$_4$ grain had a single $OR$ with the Sr$_2$TiO$_4$ grain on which it grew. Three primary $ORs$ described 47 out of 49 grain pairs that covered nearly all of RP orientation space. The first $OR$, found for 20 of the 49, was the expected RP unit-cell over RP unit-cell $OR$, expressed as [100][001]$_{film}$||[100][001]$_{sub}$. The other two $ORs$ were essentially rotated from the first by 90$^{circ}$, with one (observed for 17 of 49 pairs) being rotated about the [100] and the other (observed for 10 of 49 pairs) being rotated about the [110] (and not exactly by 90$^{circ}$). These results indicate that only a small number of $ORs$ are needed to describe isostructural RP heteroepitaxy and further demonstrate the potential of CSE in the design and growth of a wide range of complex functional oxides.



قيم البحث

اقرأ أيضاً

A high-throughput investigation of local epitaxy (called combinatorial substrate epitaxy) was carried out on Ca$_2$MnO$_4$ Ruddlesden-Popper thin films of six thicknesses (from 20 to 400 nm), all deposited on isostructural polycrystalline Sr$_2$TiO$_ 4$ substrates. Electron backscatter diffraction revealed grain-over-grain local epitaxial growth for all films, resulting in a single orientation relationship ($OR$) for each substrate-film grain pair. Two preferred epitaxial $ORs$ accounted for more than 90 % of all ORs on 300 different microcrystals, based on analyzing 50 grain pairs for each thickness. The unit cell over unit cell $OR$ ([100][001]$_{film}$ $parallel$ [100][001]$_{substrate}$, or $OR1$) accounted for approximately 30 % of each film. The $OR$ that accounted for 60 % of each film ([100][001]$_{film}$ $parallel$ [100][010]$_{substrate}$, or $OR2$) corresponds to a rotation from $OR1$ by 90$^{circ}$ about the a-axis. $OR2$ is strongly favored for substrate orientations in the center of the stereographic triangle, and $OR1$ is observed for orientations very close to (001) or to those near the edge connecting (100) and (110). While $OR1$ should be lower in energy, the majority observation of $OR2$ implies kinetic hindrances decrease the frequency of $OR1$. Persistent grain over grain growth and the absence of variations of the $OR$ frequencies with thickness implies that the growth competition is finished within the first few si{ anometer}, and local epitaxy persists thereafter during growth.
Interest for layered Ruddlesden-Popper strongly correlated manganites of Pr$_{0.5}$Ca$_{1.5}$MnO$_4$ as well as to their thin film polymorphs is motivated by the high temperature of charge orbital ordering above room temperature. We report on the tai loring of the c-axis orientation in epitaxial RP-PCMO films grown on SrTiO$_3$ (STO) substrates with different orientations as well as the use of CaMnO$_3$ (CMO) buffer layers. Films on STO(110) reveal in-plane alignment of the c-axis lying along to the [100] direction. On STO(100), two possible directions of the in-plane c-axis lead to a mosaic like, quasi two-dimensional nanostructure, consisting of RP, rock-salt and perovskite building blocks. With the use of a CMO buffer layer, RP-PCMO epitaxial films with c-axis out-of-plane were realized. Different physical vapor deposition techniques, i.e. ion beam sputtering (IBS), pulsed laser deposition (PLD) as well as metalorganic aerosol deposition (MAD) are applied in order to distinguish between the effect of growth conditions and intrinsic epitaxial properties. For all deposition techniques, despite their very different growth conditions, the surface morphology, crystal structure and orientation of the thin films reveal a high level of similarity as verified by X-ray diffraction, scanning and high resolution transmission electron microscopy. We found that for different epitaxial relations the stress in the films can be relaxed by means of a modified interface chemistry. The charge ordering in the films estimated by resistivity measurements occurs at a temperature close to that expected in bulk material.
Scanning transmission electron microscopy in combination with electron energy-loss spectroscopy is used to study LaNiO3/LaAlO3 superlattices grown on (La,Sr)AlO4 with varying single-layer thicknesses which are known to control their electronic proper ties. The microstructure of the films is investigated on the atomic level and the role of observed defects is discussed in the context of the different properties. Two types of Ruddlesden-Popper faults are found which are either two or three dimensional. The common planar Ruddlesden-Popper fault is induced by steps on the substrate surface. In contrast, the three-dimensionally arranged Ruddlesden-Popper fault, whose size is in the nanometer range, is caused by the formation of local stacking faults during film growth. Furthermore, the interfaces of the superlattices are found to show different sharpness, but the microstructure does not depend substantially on the single-layer thickness.
AB$_2$O$_4$ normal spinels with a magnetic B site can host a variety of magnetic and orbital frustrations leading to spin-liquid phases and field-induced phase transitions. Here we report the first epitaxial growth of (111)-oriented MgCr$_2$O$_4$ thi n films. By characterizing the structural and electronic properties of films grown along (001) and (111) directions, the influence of growth orientation has been studied. Despite distinctly different growth modes observed during deposition, the comprehensive characterization reveals no measurable disorder in the cation distribution nor multivalency issue for Cr ions in either orientation. Contrary to a naive expectation, the (111) stabilized films exhibit a smoother surface and a higher degree of crystallinity than (001)-oriented films. The preference in growth orientation is explained within the framework of heteroepitaxial stabilization in connection to a significantly lower (111) surface energy. These findings open broad opportunities in the fabrication of 2D kagome-triangular heterostructures with emergent magnetic behavior inaccessible in bulk crystals.
We report on the growth of epitaxial Sr2RuO4 films using a hybrid molecular beam epitaxy approach in which a volatile precursor containing RuO4 is used to supply ruthenium and oxygen. The use of the precursor overcomes a number of issues encountered in traditional MBE that uses elemental metal sources. Phase-pure, epitaxial thin films of Sr2RuO4 are obtained. At high substrate temperatures, growth proceeds in a layer-by-layer mode with intensity oscillations observed in reflection high-energy electron diffraction. Films are of high structural quality, as documented by x-ray diffraction, atomic force microscopy, and transmission electron microscopy. The method should be suitable for the growth of other complex oxides containing ruthenium, opening up opportunities to investigate thin films that host rich exotic ground states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا