ﻻ يوجد ملخص باللغة العربية
Interest for layered Ruddlesden-Popper strongly correlated manganites of Pr$_{0.5}$Ca$_{1.5}$MnO$_4$ as well as to their thin film polymorphs is motivated by the high temperature of charge orbital ordering above room temperature. We report on the tailoring of the c-axis orientation in epitaxial RP-PCMO films grown on SrTiO$_3$ (STO) substrates with different orientations as well as the use of CaMnO$_3$ (CMO) buffer layers. Films on STO(110) reveal in-plane alignment of the c-axis lying along to the [100] direction. On STO(100), two possible directions of the in-plane c-axis lead to a mosaic like, quasi two-dimensional nanostructure, consisting of RP, rock-salt and perovskite building blocks. With the use of a CMO buffer layer, RP-PCMO epitaxial films with c-axis out-of-plane were realized. Different physical vapor deposition techniques, i.e. ion beam sputtering (IBS), pulsed laser deposition (PLD) as well as metalorganic aerosol deposition (MAD) are applied in order to distinguish between the effect of growth conditions and intrinsic epitaxial properties. For all deposition techniques, despite their very different growth conditions, the surface morphology, crystal structure and orientation of the thin films reveal a high level of similarity as verified by X-ray diffraction, scanning and high resolution transmission electron microscopy. We found that for different epitaxial relations the stress in the films can be relaxed by means of a modified interface chemistry. The charge ordering in the films estimated by resistivity measurements occurs at a temperature close to that expected in bulk material.
A high-throughput investigation of local epitaxy (called combinatorial substrate epitaxy) was carried out on Ca$_2$MnO$_4$ Ruddlesden-Popper thin films of six thicknesses (from 20 to 400 nm), all deposited on isostructural polycrystalline Sr$_2$TiO$_
The local epitaxial growth of pulsed laser deposited Ca$_2$MnO$_4$ films on polycrystalline spark plasma sintered Sr$_2$TiO$_4$ substrates was investigated to determine phase formation and preferred epitaxial orientation relationships ($ORs$) for iso
We studied the charge-orbital ordering in the superlattice of charge-ordered insulating Pr$_{0.5}$Ca$_{0.5}$MnO$_3$ and ferromagnetic metallic La$_{0.5}$Sr$_{0.5}$MnO$_3$ by resonant soft x-ray diffraction. A temperature-dependent incommensurability
Oxygen-defect control has long been considered an influential tuning knob for producing various property responses in complex oxide films. In addition to physical property changes, modification to the lattice structure, specifically lattice expansion
We use neutron scattering to study the lattice and magnetic structure of the layered half-doped manganite Pr$_{0.5}$Ca$_{1.5}$MnO$_4$. On cooling from high temperature, the system first becomes charge- and orbital- ordered (CO/OO) near $T_{CO}=300$ K