ترغب بنشر مسار تعليمي؟ اضغط هنا

Dicke superradiance as a nondestructive probe for quantum quenches in optical lattices

122   0   0.0 ( 0 )
 نشر من قبل Nicolai ten Brinke
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study Dicke superradiance as collective and coherent absorption and (time-delayed) emission of photons from an ensemble of ultracold atoms in an optical lattice. Since this process depends on the coherence properties of the atoms (e.g., superfluidity), it can be used as a probe for their quantum state. In analogy to pump-probe spectroscopy in solid-state physics, this detection method facilitates the investigation of nonequilibrium phenomena and is less invasive than time-of-flight experiments or direct (projective) measurements of the atom number (or parity) per lattice site, which both destroy properties of the quantum state such as phase coherence.



قيم البحث

اقرأ أيضاً

We present a proposal for a probing scheme utilizing Dicke superradiance to obtain information about ultracold atoms in optical lattices. A probe photon is absorbed collectively by an ensemble of lattice atoms generating a Dicke state. The lattice dy namics (e.g., tunneling) affects the coherence properties of that Dicke state and thus alters the superradiant emission characteristics -- which in turn provides insight into the lattice (dynamics). Comparing the Bose-Hubbard and the Fermi-Hubbard model, we find similar superradiance in the strongly interacting Mott insulator regime, but crucial differences in the weakly interacting (superfluid or metallic) phase. Furthermore, we study the possibility to detect whether a quantum phase transition between the two regimes can be considered adiabatic or a quantum quench.
270 - D. Nagy , G. Konya , G. Szirmai 2009
We show that the motion of a laser-driven Bose-Einstein condensate in a high-finesse optical cavity realizes the spin-boson Dicke-model. The quantum phase transition of the Dicke-model from the normal to the superradiant phase corresponds to the self -organization of atoms from the homogeneous into a periodically patterned distribution above a critical driving strength. The fragility of the ground state due to photon measurement induced back action is calculated.
Mean-field dynamics of strongly interacting bosons described by hard core bosons with nearest-neighbor attraction has been shown to support two species of solitons: one of Gross-Pitaevskii (GP-type) where the condensate fraction remains dark and a no vel non-Gross-Pitaevskii-type (non-GP-type) characterized by brightening of the condensate fraction. Here we study the effects of quantum fluctuations on these solitons using the adaptive time-dependent density matrix renormalization group method, which takes into account the effect of strong correlations. We use local observables as the density, condensate density and correlation functions as well as the entanglement entropy to characterize the stability of the initial states. We find both species of solitons to be stable under quantum evolution for a finite duration, their tolerance to quantum fluctuations being enhanced as the width of the soliton increases. We describe possible experimental realizations in atomic Bose Einstein Condensates, polarized degenerate Fermi gases, and in systems of polar molecules on optical lattices.
We consider an important generalization of the Dicke model in which multi-level atoms, instead of two-level atoms as in conventional Dicke model, interact with a single photonic mode. We explore the phase diagram of a broad class of atom-photon coupl ing schemes and show that, under this generalization, the Dicke model can become multicritical. For a subclass of experimentally realizable schemes, multicritical conditions of arbitrary order can be expressed analytically in compact forms. We also calculate the atom-photon entanglement entropy for both critical and non-critical cases. We find that the order of the criticality strongly affects the critical entanglement entropy: higher order yields stronger entanglement. Our work provides deep insight into quantum phase transitions and multicriticality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا