ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermal energies of classical and quantum damped oscillators coupled to reservoirs

67   0   0.0 ( 0 )
 نشر من قبل Thomas Philbin
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the global thermal state of classical and quantum harmonic oscillators that interact with a reservoir. Ohmic damping of the oscillator can be exactly treated with a 1D scalar field reservoir, whereas general non-Ohmic damping is conveniently treated with a continuum reservoir of harmonic oscillators. Using the diagonalized Hamiltonian of the total system, we calculate a number of thermodynamic quantities for the damped oscillator: the mean force internal energy, mean force free energy, and another internal energy based on the free-oscillator Hamiltonian. The classical mean force energy is equal to that of a free oscillator, for both Ohmic and non-Ohmic damping and no matter how strong the coupling to the reservoir. In contrast, the quantum mean force energy depends on the details of the damping and diverges for strictly Ohmic damping. These results give additional insight into the steady-state thermodynamics of open systems with arbitrarily strong coupling to a reservoir, complementing results for energies derived within dynamical approaches (e.g. master equations) in the weak-coupling regime.



قيم البحث

اقرأ أيضاً

72 - Roumen Tsekov 2021
In the frames of classical mechanics the generalized Langevin equation is derived for an arbitrary mechanical subsystem coupled to the harmonic bath of a solid. A time-acting temperature operator is introduced for the quantum Klein-Kramers and Smoluc howski equations, accounting for the effect of the quantum thermal bath oscillators. The model of Brownian emitters is theoretically studied and the relevant evolutionary equations for the probability density are derived. The Schrodinger equation is explained via collisions of the target point particles with the quantum force carriers, transmitting the fundamental interactions between the point particles. Thus, electrons and other point particles are no waves and the wavy chapter of quantum mechanics originated for the force carriers. A stochastic Lorentz-Langevin equation is proposed to describe the underlaying Brownian-like motion of the point particles in quantum mechanics. Considering the Brownian dynamics in the frames of the Bohmian mechanics, the density functional Bohm-Langevin equation is proposed, and the relevant Smoluchowski-Bohm equation is derived. A nonlinear master equation is proposed by proper quantization of the classical Klein-Kramers equation. Its equilibrium solution in the exact canonical Gibbs density operator, while the well-known Caldeira-Leggett equation is simply a linearization at high temperature. In the case of a free quantum Brownian particles, a new law for the spreading of the wave packet it discovered, which represents the quantum generalization of the classical Einstein law of Brownian motion. A new projector operator is proposed for the collapse of the wave function of a quantum particle moving in a classical environment. Its application results in dissipative Schrodinger equations, as well as in a new form of dissipative Liouville equation in classical mechanics.
We show that non-Markovian effects of the reservoirs can be used as a resource to extract work from an Otto cycle. The state transformation under non-Markovian dynamics is achieved via a two-step process, namely an isothermal process using a Markovia n reservoir followed by an adiabatic process. From second law of thermodynamics, we show that the maximum amount of extractable work from the state prepared under the non-Markovian dynamics quantifies a lower bound of non-Markovianity. We illustrate our ideas with an explicit example of non-Markovian evolution.
The seminal work by Sadi Carnot in the early nineteenth century provided the blueprint of a reversible heat engine and the celebrated second law of thermodynamics eventually followed. Almost two centuries later, the quest to formulate a quantum theor y of the thermodynamic laws has thus unsurprisingly motivated physicists to visualise what are known as `quantum thermal machines (QTMs). In this article, we review the prominent developments achieved in the theoretical construction as well as understanding of QTMs, beginning from the formulation of their earliest prototypes to recent models. We also present a detailed introduction and highlight recent progress in the rapidly developing field of `quantum batteries.
56 - Carsten Henkel 2021
The non-equilibrium state of two oscillators with a mutual interaction and coupled to separate heat baths is discussed. Bosonic baths are considered, and an exact spectral representation for the elements of the covariance matrix is provided analytica lly. A wide class of spectral densities for the relevant bath modes is allowed for. The validity of the fluctuation-dissipation theorem is established for global equilibrium (both baths at the same temperature) in the stationary state. Spectral measures of entanglement are suggested by comparing to the equilibrium spectrum of zero-point fluctuations. No rotating-wave approximation is applied, and anomalous heat transport from cold to hot bath, as reported in earlier work, is demonstrated not to occur.
Controllability -- the possibility of performing any target dynamics by applying a set of available operations -- is a fundamental requirement for the practical use of any physical system. For finite-dimensional systems, as for instance spin systems, precise criterions to establish controllability, such as the so called rank criterion, are well known. However most physical systems require a description in terms of an infinite-dimensional Hilbert space whose controllability properties are poorly understood. Here, we investigate infinite-dimensional bosonic quantum systems -- encompassing quantum light, ensembles of bosonic atoms, motional degrees of freedom of ions, and nano-mechanical oscillators -- governed by quadratic Hamiltonians (such that their evolution is analogous to coupled harmonic oscillators). After having highlighted the intimate connection between controllability and recurrence in the Hilbert space, we prove that, for coupled oscillators, a simple extra condition has to be fulfilled to extend the rank criterion to infinite dimensional quadratic systems. Further, we present a useful application of our finding, by proving indirect controllability of a chain of harmonic oscillators.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا