ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterization of the nitrogen split interstitial defect in wurtzite aluminum nitride using density functional theory

161   0   0.0 ( 0 )
 نشر من قبل Attila Szallas PhD
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We carried out Heyd-Scuseria-Ernzerhof hybrid density functional theory plane wave supercell calculations in wurtzite aluminum nitride in order to characterize the geometry, formation energies, transition levels and hyperfine tensors of the nitrogen split interstitial defect. The calculated hyperfine tensors may provide useful fingerprint of this defect for electron paramagnetic resonance measurement.



قيم البحث

اقرأ أيضاً

94 - Abhishek Raghav 2020
In this work an overall electronic structure including the position and formation energies of various intrinsic defects are computed for anatase using Density Functional Theory aided by Hubbard correction (DFT+U). The intrinsic point defects consider ed here are, oxygen vacancy ($V_O$), oxygen interstitial ($O_i$), titanium vacancy ($V_{Ti}$) and titanium interstitial ($Ti_i$). Out of all the intrinsic defects considered here, $V_{Ti}$ and $Ti_i$ are found to be most stable under equilibrium condition. Whereas, conduction band in anatase is consisted of mainly Ti 3d with a minor component of O 2p states, valence band is found to be mainly composed of O 2p with a minor contribution from Ti 3d states. $V_O$ and $Ti_i$ are found to form localized states in the band gap. Moreover, anisotropy in the effective mass is seen. Finally, an alignment of band diagrams for all the intrinsic defect states is performed using vacuum potential from slab-supercell calculation as reference. This first principle study would help in the understanding of defect-induced insulating to conducting transition in anatase, which would have significant impact in the photocatalytic and optoelectronic area.
146 - H. J. Xiang , M.-H. Whangbo 2007
The ferroelectricity of the spiral magnets LiCu2O2 and LiCuVO4 was examined by calculating the electric polarizations of their spin spiral states on the basis of density functional theory with spin-orbit coupling. Our work unambiguously reveals that spin-orbit coupling is responsible for the ferroelectricity with the primary contribution from the spin-orbit coupling on the Cu sites, but the asymmetric density distribution responsible for the electric polarization occurs mainly around the O atoms. The electric polarization is calculated to be much greater for the ab- than for the bc-plane spin spiral. The observed spin-spiral plane is found to be consistent with the observed direction of the electric polarization for LiCuVO4, but inconsistent for LiCu2O2.
Nitrogen interstitials (N$_mathrm{i}$) have the lowest formation energy among intrinsic defects of hexagonal boron nitride (hBN) under n-type and N-rich conditions. Using an optimized hybrid functional, which reproduces the gap and satisfies the gene ralized Koopmans condition, an N$_mathrm{i}$ configuration is found which is lower in energy than the ones reported so far. The (0/-) charge transition level is also much deeper, so N$_mathrm{i}$ acts as a very efficient compensating center in n-type samples. Its calculated photoluminescence (PL) at 3.0 eV agrees well with the position of an N-sensitive band measured at 3.1 eV. It has been also found that the nitrogen vacancy (V$_mathrm{N}$) cannot be the origin of the three boron electron (TBC) electron paramagnetic resonance (EPR) center and in thermal equilibrium it cannot even exist in n-type samples.
We perform first principles simulations for the structural, elastic and electronic properties of orthorhombic samarium orthoferrite $SmFeO_3$ within the framework of density functional theory. A number of different density functionals, such as local density approximation, generalized gradient approximation, Hubbard interaction modified functional, modified Becke$-$Johnson approximation and Heyd$-$Scuseria$-$Ernzerhof hybrid functional have been used to model the exact electron exchange-correlation. We estimate the energy of the ground state for different magnetic configurations of $SmFeO_3$. The crystal structure of $SmFeO_3$ is characterized in terms of the lattice parameters, atomic positions, relevant ionic radii, bond lengths and bond angles. The stability of the $SmFeO_3$ orthorhombic structure is simulated in terms of its elastic properties. For the electronic structure simulations, we provide estimates based on density functionals with varying degrees of computational complexities in the Jacobs ladder.
Time-dependent density functional theory is extended to include dissipative systems evolving under a master equation, providing a Hamiltonian treatment for molecular electronics. For weak electric fields, the isothermal conductivity is shown to match the adiabatic conductivity, thereby recovering the Landauer result.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا