ترغب بنشر مسار تعليمي؟ اضغط هنا

Structural, Elastic and Electronic Properties of $SmFeO_3$ using Density Functional Theory

78   0   0.0 ( 0 )
 نشر من قبل Imtiaz Ahmed
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We perform first principles simulations for the structural, elastic and electronic properties of orthorhombic samarium orthoferrite $SmFeO_3$ within the framework of density functional theory. A number of different density functionals, such as local density approximation, generalized gradient approximation, Hubbard interaction modified functional, modified Becke$-$Johnson approximation and Heyd$-$Scuseria$-$Ernzerhof hybrid functional have been used to model the exact electron exchange-correlation. We estimate the energy of the ground state for different magnetic configurations of $SmFeO_3$. The crystal structure of $SmFeO_3$ is characterized in terms of the lattice parameters, atomic positions, relevant ionic radii, bond lengths and bond angles. The stability of the $SmFeO_3$ orthorhombic structure is simulated in terms of its elastic properties. For the electronic structure simulations, we provide estimates based on density functionals with varying degrees of computational complexities in the Jacobs ladder.



قيم البحث

اقرأ أيضاً

We discuss the structural and electronic properties of tetragonal CuO grown on SrTiO3(100) by means of hybrid density functional theory. Our analysis explains the anomalously large Cu-O vertical distance observed in the experiments (~2.7 A) in terms of a peculiar frustration between two competing local Cu-O environments characterized by different in-plane and out-of-plane bond lengths and Cu electronic populations. The proper inclusion of substrate effects is crucial to understand the tetragonal expansion and to reproduce correctly the measured valence band spectrum for a CuO thickness of 3-3.5 unit cells, in agreement with the experimentally estimated thickness.
94 - Abhishek Raghav 2020
In this work an overall electronic structure including the position and formation energies of various intrinsic defects are computed for anatase using Density Functional Theory aided by Hubbard correction (DFT+U). The intrinsic point defects consider ed here are, oxygen vacancy ($V_O$), oxygen interstitial ($O_i$), titanium vacancy ($V_{Ti}$) and titanium interstitial ($Ti_i$). Out of all the intrinsic defects considered here, $V_{Ti}$ and $Ti_i$ are found to be most stable under equilibrium condition. Whereas, conduction band in anatase is consisted of mainly Ti 3d with a minor component of O 2p states, valence band is found to be mainly composed of O 2p with a minor contribution from Ti 3d states. $V_O$ and $Ti_i$ are found to form localized states in the band gap. Moreover, anisotropy in the effective mass is seen. Finally, an alignment of band diagrams for all the intrinsic defect states is performed using vacuum potential from slab-supercell calculation as reference. This first principle study would help in the understanding of defect-induced insulating to conducting transition in anatase, which would have significant impact in the photocatalytic and optoelectronic area.
Using first-principles calculations within the generalized gradient approximation, we predicted the lattice parameters, elastic constants, vibrational properties, and electronic structure of cementite (Fe3C). Its nine single-crystal elastic constants were obtained by computing total energies or stresses as a function of applied strain. Furthermore, six of them were determined from the initial slopes of the calculated longitudinal and transverse acoustic phonon branches along the [100], [010] and [001] directions. The three methods agree well with each other, the calculated polycrystalline elastic moduli are also in good overall agreement with experiments. Our calculations indicate that Fe3C is mechanically stable. The experimentally observed high elastic anisotropy of Fe3C is also confirmed by our study. Based on electronic density of states and charge density distribution, the chemical bonding in Fe3C was analyzed and was found to exhibit a complex mixture of metallic, covalent, and ionic characters.
The strain effect on electronic structure and thermoelectric properties of Higher Manganese Silicides (HMSs) Mn4Si7 was studied using Density Functional Theory (DFT) and through solving Boltzman Transport Equation (BTE). We found that the tensile str ain attempts to reduce the band gap while the compressive strain not much affect to band gap. The Seebeck coeficient was found to be increased with increasing temperature, which is very consistent to experiments. The electrical conductivity and power factor show highly degree of anisotropy, where in-plane direction is more dominant. The different behavior of electrical conductivity along in-plane and outof plane direction was explained due to the change of band dispersion in the valence band maximum (VBM).
Ab initio calculations using the local spin density approximation and also including the Hubbard $U$ have been performed for three low energy configurations of the interface between LaAlO$_3$ and TiO$_2$-anatase. Two types of interfaces have been con sidered: LaO/TiO$_2$ and AlO$_2$/TiO, the latter with Ti-termination and therefore a missing oxygen. A slab-geometry calculation was carried out and all the atoms were allowed to relax in the direction normal to the interface. In all the cases considered, the interfacial Ti atom acquires a local magnetic moment and its formal valence is less than +4. When there are oxygen vacancies, this valence decreases abruptly inside the anatase slab while in the LaO/TiO$_2$ interface the changes are more gradual.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا