ﻻ يوجد ملخص باللغة العربية
We continue to study regularity results for weak solutions of the large class of second order degenerate quasilinear equations of the form begin{eqnarray} text{div}big(A(x,u, abla u)big) = B(x,u, abla u)text{ for }xinOmega onumber end{eqnarray} as considered in our previous paper giving local boundedness of weak solutions. Here we derive a version of Harnacks inequality as well as local Holder continuity for weak solutions. The possible degeneracy of an equation in the class is expressed in terms of a nonnegative definite quadratic form associated with its principal part. No smoothness is required of either the quadratic form or the coefficients of the equation. Our results extend ones obtained by J. Serrin and N. Trudinger for quasilinear equations, as well as ones for subelliptic linear equations obtained by Sawyer and Wheeden in their 2006 AMS memoir article.
We prove continuity and Harnacks inequality for bounded solutions to elliptic equations of the type $$ begin{aligned} {rm div}big(| abla u|^{p-2}, abla u+a(x)| abla u|^{q-2}, abla ubig)=0,& quad a(x)geqslant0, |a(x)-a(y)|leqslant A|x-y|^{alpha}mu(|x
In this paper we study existence and spectral properties for weak solutions of Neumann and Dirichlet problems associated to second order linear degenerate elliptic partial differential operators $X$, with rough coefficients of the form $$X=-text{div}
For a general class of divergence type quasi-linear degenerate parabolic equations with measurable coeffcients and lower order terms from non-linear Kato-type classes, we prove local boundedness and continuity of solutions, and the intrinsic Harnack inequality for positive solutions.
This article addresses the local boundedness and Holder continuity of weak solutions to kinetic Fokker-Planck equations with general transport operators and rough coefficients. These results are due to the mixing effect of diffusion and transport. Al
This article gives an existence theory for weak solutions of second order non-elliptic linear Dirichlet problems of the form {eqnarray} ablaP(x) abla u +{bf HR}u+{bf SG}u +Fu &=& f+{bf Tg} textrm{in}Theta u&=&phitextrm{on}partial Theta.{eqnarray} Th