ترغب بنشر مسار تعليمي؟ اضغط هنا

Existence of Weak Solutions of Linear Subelliptic Dirichlet Problems With Rough Coefficients

144   0   0.0 ( 0 )
 نشر من قبل Scott Rodney
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Scott Rodney




اسأل ChatGPT حول البحث

This article gives an existence theory for weak solutions of second order non-elliptic linear Dirichlet problems of the form {eqnarray} ablaP(x) abla u +{bf HR}u+{bf SG}u +Fu &=& f+{bf Tg} textrm{in}Theta u&=&phitextrm{on}partial Theta.{eqnarray} The principal part $xiP(x)xi$ of the above equation is assumed to be comparable to a quadratic form ${cal Q}(x,xi) = xiQ(x)xi$ that may vanish for non-zero $xiinmathbb{R}^n$. This is achieved using techniques of functional analysis applied to the degenerate Sobolev spaces $QH^1(Theta)=W^{1,2}(Omega,Q)$ and $QH^1_0(Theta)=W^{1,2}_0(Theta,Q)$ as defined in recent work of E. Sawyer and R. L. Wheeden. The aforementioned authors in referenced work give a regularity theory for a subset of the class of equations dealt with here.



قيم البحث

اقرأ أيضاً

In this paper we study existence and spectral properties for weak solutions of Neumann and Dirichlet problems associated to second order linear degenerate elliptic partial differential operators $X$, with rough coefficients of the form $$X=-text{div} (P abla )+{bf HR}+{bf S^prime G} +F$$ in a geometric homogeneous space setting where the $ntimes n$ matrix function $P=P(x)$ is allowed to degenerate. We give a maximum principle for weak solutions of $Xuleq 0$ and follow this with a result describing a relationship between compact projection of the degenerate Sobolev space $QH^{1,p}$ into $L^q$ and a Poincare inequality with gain adapted to $Q$.
We continue to study regularity results for weak solutions of the large class of second order degenerate quasilinear equations of the form begin{eqnarray} text{div}big(A(x,u, abla u)big) = B(x,u, abla u)text{ for }xinOmega onumber end{eqnarray} as co nsidered in our previous paper giving local boundedness of weak solutions. Here we derive a version of Harnacks inequality as well as local Holder continuity for weak solutions. The possible degeneracy of an equation in the class is expressed in terms of a nonnegative definite quadratic form associated with its principal part. No smoothness is required of either the quadratic form or the coefficients of the equation. Our results extend ones obtained by J. Serrin and N. Trudinger for quasilinear equations, as well as ones for subelliptic linear equations obtained by Sawyer and Wheeden in their 2006 AMS memoir article.
87 - H.T. Tuan 2020
This paper is devoted to discussing the existence and uniqueness of weak solutions to time-fractional elliptic equations having time-dependent variable coefficients. To obtain the main result, our strategy is to combine the Galerkin method, a basic i nequality for the fractional derivative of convex Lyapunov candidate functions, the Yoshida approximation sequence and the weak compactness argument.
We study existence and uniqueness of the invariant measure for a stochastic process with degenerate diffusion, whose infinitesimal generator is a linear subelliptic operator in the whole space R N with coefficients that may be unbounded. Such a measu re together with a Liouville-type theorem will play a crucial role in two applications: the ergodic problem studied through stationary problems with vanishing discount and the long time behavior of the solution to a parabolic Cauchy problem. In both cases, the constants will be characterized in terms of the invariant measure.
This paper deals with existence and regularity of positive solutions of singular elliptic problems on a smooth bounded domain with Dirichlet boundary conditions involving the $Phi$-Laplacian operator. The proof of existence is based on a variant of t he generalized Galerkin method that we developed inspired on ideas by Browder and a comparison principle. By using a kind of Moser iteration scheme we show $L^{infty}(Omega)$-regularity for positive solutions
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا