ﻻ يوجد ملخص باللغة العربية
Gauged N=8 supergravity in four dimensions is now known to admit a deformation characterized by a real parameter $omega$ lying in the interval $0leomegale pi/8$. We analyse the fluctuations about its anti-de Sitter vacuum, and show that the full N=8 supersymmetry can be maintained by the boundary conditions only for $omega=0$. For non-vanishing $omega$, and requiring that there be no propagating spin s>1 fields on the boundary, we show that N=3 is the maximum degree of supersymmetry that can be preserved by the boundary conditions. We then construct in detail the consistent truncation of the N=8 theory to give $omega$-deformed SO(6) gauged N=6 supergravity, again with $omega$ in the range $0leomegale pi/8$. We show that this theory admits fully N=6 supersymmetry-preserving boundary conditions not only for $omega=0$, but also for $omega=pi/8$. These two theories are related by a U(1) electric-magnetic duality. We observe that the only three-point functions that depend on $omega$ involve the coupling of an SO(6) gauge field with the U(1) gauge field and a scalar or pseudo-scalar field. We compute these correlation functions and compare them with those of the undeformed N=6 theory. We find that the correlation functions in the $omega=pi/8$ theory holographically correspond to amplitudes in the U(N)_k x U(N)_{-k} ABJM model in which the U(1) Noether current is replaced by a dynamical U(1) gauge field. We also show that the $omega$-deformed N=6 gauged supergravities can be obtained via consistent reductions from the eleven-dimensional or ten-dimensional type IIA supergravities.
We construct the wave functions in the q-deformed 2d Yang-Mills theory that compute torus correlation functions of affine currents in the VOA associated to a class of 4d $N = 2$ SCFTs. These wave functions are then shown to reduce to the topological
We analyse the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite dimensional Lie algebras, MacMahon and Ruelle functions. A p-dimensional MacMahon function is the generating function of
We describe a new approach to computing the chiral part of correlation functions of stress-tensor supermultiplets in N=4 SYM that relies on symmetries, analytic properties and the structure of the OPE only. We demonstrate that the correlation functio
Using supersymmetric localization, we consider four-dimensional $mathcal{N}=2$ superconformal quiver gauge theories obtained from $mathbb{Z}_n$ orbifolds of $mathcal{N}=4$ Super Yang-Mills theory in the large $N$ limit at weak coupling. In particular
We compute correlation functions of chiral primary operators in N=2 superconformal theories at large N using a construction based on supersymmetric localization recently developed by Gerchkovitz et al. We focus on N=4 SYM as well as on superconformal