ترغب بنشر مسار تعليمي؟ اضغط هنا

Large N Correlation Functions in Superconformal Field Theories

103   0   0.0 ( 0 )
 نشر من قبل Diego Rodriguez-Gomez
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute correlation functions of chiral primary operators in N=2 superconformal theories at large N using a construction based on supersymmetric localization recently developed by Gerchkovitz et al. We focus on N=4 SYM as well as on superconformal QCD. In the case of N=4 we recover the free field theory results as expected due to non-renormalization theorems. In the case of superconformal QCD we study the planar expansion in the large N limit. The final correlators admit a simple generalization to a finite N formula which exactly matches the various small $N$ results in the literature.



قيم البحث

اقرأ أيضاً

Using supersymmetric localization, we consider four-dimensional $mathcal{N}=2$ superconformal quiver gauge theories obtained from $mathbb{Z}_n$ orbifolds of $mathcal{N}=4$ Super Yang-Mills theory in the large $N$ limit at weak coupling. In particular , we show that: 1) The partition function for arbitrary couplings can be constructed in terms of universal building blocks. 2) It can be computed in perturbation series, which converges uniformly for $|lambda_I|<pi^2$, where $lambda_I$ are the t Hooft coupling of the gauge groups. 3) The perturbation series for two-point functions can be explicitly computed to arbitrary orders. There is no universal effective coupling by which one can express them in terms of correlators of the $mathcal{N}=4$ theory. 4) One can define twisted and untwisted sector operators. At the perturbative orbifold point, when all the couplings are the same, the correlators of untwisted sector operators coincide with those of $mathcal{N}=4$ Super Yang-Mills theory. In the twisted sector, we find remarkable cancellations of a certain number of planar loops, determined by the conformal dimension of the operator.
In this paper we study the four-point correlation function of the energy-momentum supermultiplet in theories with N=4 superconformal symmetry in four dimensions. We present a compact form of all component correlators as an invariant of a particular a belian subalgebra of the N=4 superconformal algebra. This invariant is unique up to a single function of the conformal cross-ratios which is fixed by comparison with the correlation function of the lowest half-BPS scalar operators. Our analysis is independent of the dynamics of a specific theory, in particular it is valid in N=4 super Yang-Mills theory for any value of the coupling constant. We discuss in great detail a subclass of component correlators, which is a crucial ingredient for the recent study of charge-flow correlations in conformal field theories. We compute the latter explicitly and elucidate the origin of the interesting relations among different types of flow correlations previously observed in arXiv:1309.1424.
Superconformal indices (SCIs) of 4d ${mathcal N}=4$ SYM theories with simple gauge groups are described in terms of elliptic hypergeometric integrals. For $F_4, E_6, E_7, E_8$ gauge groups this yields first examples of integrals of such type. S-duali ty transformation for G_2 and F_4 SCIs is equivalent to a change of integration variables. Equality of SCIs for SP(2N) and SO(2N+1) group theories is proved in several important special cases. Reduction of SCIs to partition functions of 3d $mathcal{N}=2$ SYM theories with one matter field in the adjoint representation is investigated, corresponding 3d dual partners are found, and some new related hyperbolic beta integrals are conjectured.
We study the four-dimensional N=2 superconformal field theories that describe D3-branes probing the recently constructed N=2 S-folds in F-theory. We introduce a novel, infinite class of superconformal field theories related to S-fold theories via par tial Higgsing. We determine several properties of both the S-fold models and this new class of theories, including their central charges, Coulomb branch spectrum, and moduli spaces of vacua, by bringing to bear an array of field-theoretical techniques, to wit, torus-compactifications of six-dimensional N=(1,0) theories, class S technology, and the SCFT/VOA correspondence.
In 4d $mathcal{N}=1$ superconformal field theories (SCFTs) the R-symmetry current, the stress-energy tensor, and the supersymmetry currents are grouped into a single object, the Ferrara-Zumino multiplet. In this work we study the most general form of three-point functions involving two Ferrara-Zumino multiplets and a third generic multiplet. We solve the constraints imposed by conservation in superspace and show that non-trivial solutions can only be found if the third multiplet is R-neutral and transforms in suitable Lorentz representations. In the process we give a prescription for counting independent tensor structures in superconformal three-point functions. Finally, we set the Grassmann coordinates of the Ferrara-Zumino multiplets to zero and extract all three-point functions involving two R-currents and a third conformal primary. Our results pave the way for bootstrapping the correlation function of four R-currents in 4d $mathcal{N}=1$ SCFTs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا