ﻻ يوجد ملخص باللغة العربية
We construct steering inequalities which exhibit unbounded violation. The concept was to exploit the relationship between steering violation and uncertainty relation. To this end we apply mutually unbiased bases and anti-commuting observables, known to exibit the strongest uncertainty. In both cases, we are able to procure unbounded violations. Our approach is much more constructive and transparent than the operator space theory approach employed to obtain large violation of Bell inequalities. Importantly, using anti-commuting observables we are able to obtain a {it dichotomic} steering inequality with unbounded violation. So far there is no analogous result for Bell inequalities. Interestingly, both the dichotomic inequality and one of our inequalities can not be directly obtained from existing uncertainty relations, which strongly suggest the existence of an unknown kind of uncertainty relation.
In this work, we characterize the amount of steerability present in quantum theory by connecting the maximal violation of a steering inequality to an inclusion problem of free spectrahedra. In particular, we show that the maximal violation of an arbi
We derive a new steering inequality based on a fine-grained uncertainty relation to capture EPR-steering for bipartite systems. Our steering inequality improves over previously known ones since it can experimentally detect all steerable two-qubit Wer
A sequential steering scenario is investigated, where multiple Bobs aim at demonstrating steering using successively the same half of an entangled quantum state. With isotropic entangled states of local dimension $d$, the number of Bobs that can stee
We study the problem of certifying quantum steering in a detection-loophole-free manner in experimental situations that require post-selection. We present a method to find the modified local-hidden-state bound of steering inequalities in such a post-
In this work we show that bipartite quantum states with local Hilbert space dimension n can violate a Bell inequality by a factor of order $sqrt{n}$ (up to a logarithmic factor) when observables with n possible outcomes are used. A central tool in th