ﻻ يوجد ملخص باللغة العربية
We derive a new steering inequality based on a fine-grained uncertainty relation to capture EPR-steering for bipartite systems. Our steering inequality improves over previously known ones since it can experimentally detect all steerable two-qubit Werner state with only two measurement settings on each side. According to our inequality, pure entangle states are maximally steerable. Moreover, by slightly changing the setting, we can express the amount of violation of our inequality as a function of their violation of the CHSH inequality. Finally, we prove that the amount of violation of our steering inequality is, up to a constant factor, a lower bound on the key rate of a one-sided device independent quantum key distribution protocol secure against individual attacks. To show this result, we first derive a monogamy relation for our steering inequality.
Entanglement is the defining feature of quantum mechanics, and understanding the phenomenon is essential at the foundational level and for future progress in quantum technology. The concept of steering was introduced in 1935 by Schrodinger as a gener
The generation and manipulation of strong entanglement and Einstein-Podolsky-Rosen (EPR) steering in macroscopic systems are outstanding challenges in modern physics. Especially, the observation of asymmetric EPR steering is important for both its fu
We construct steering inequalities which exhibit unbounded violation. The concept was to exploit the relationship between steering violation and uncertainty relation. To this end we apply mutually unbiased bases and anti-commuting observables, known
A single photon incident on a beam splitter produces an entangled field state, and in principle could be used to violate a Bell-inequality, but such an experiment (without post-selection) is beyond the reach of current experiments. Here we consider t
We study the problem of certifying quantum steering in a detection-loophole-free manner in experimental situations that require post-selection. We present a method to find the modified local-hidden-state bound of steering inequalities in such a post-