ترغب بنشر مسار تعليمي؟ اضغط هنا

Condensation of collective charge ordering in Chromium

221   0   0.0 ( 0 )
 نشر من قبل Andrej Singer
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Here we report on the dynamics of the structural order parameter in a chromium film using synchrotron radiation in response to photo-induced ultra-fast excitations. Following transient optical excitations the effective lattice temperature of the film rises close to the N{e}el temperature and the charge density wave (CDW) amplitude is reduced. Although we expect the electronic charge ordering to vanish shortly after the excitation we observe that the CDW is never completely disrupted, which is revealed by its unmodified period at elevated temperatures. We attribute the persistence of the CDW to the long-lived periodic lattice displacement in chromium. The long-term evolution shows that the CDW revives to its initial strength within 1 ns, which appears to behave in accordance with the temperature dependence in equilibrium. This study highlights the fundamental role of the lattice distortion in charge ordered systems and its impact on the re-condensation dynamics of the charge ordered state in strongly correlated materials.



قيم البحث

اقرأ أيضاً

We report on the generation of a Bose-Einstein condensate in a gas of chromium atoms, which will make studies of the effects of anisotropic long-range interactions in degenerate quantum gases possible. The preparation of the chromium condensate requi res novel cooling strategies that are adapted to its special electronic and magnetic properties. The final step to reach quantum degeneracy is forced evaporative cooling of 52Cr atoms within a crossed optical dipole trap. At a critical temperature of T~700nK, we observe Bose-Einstein condensation by the appearance of a two-component velocity distribution. Released from an anisotropic trap, the condensate expands with an inversion of the aspect ratio. We observe critical behavior of the condensate fraction as a function of temperature and more than 50,000 condensed 52Cr atoms.
We report here on time-resolved x-ray diffraction measurements following femtosecond laser excitation in pure bulk chromium. Comparing the evolution of incommensurate charge-density-wave (CDW) and atomic lattice reflections, we show that, few nanosec onds after laser excitation, the CDW undergoes different structural changes than the atomic lattice. We give evidence for a transient CDW shear strain that breaks the lattice point symmetry. This strain is characteristic of sliding CDWs, as observed in other incommensurate CDW systems, suggesting the laser-induced CDW sliding capability in 3D systems. This first evidence opens perspectives for unconventional laser-assisted transport of correlated charges.
At ambient temperatures, CeRuSn exhibits an extraordinary structure with a coexistence of two types of Ce ions in a metallic environment, namely trivalent Ce3+ and intermediate valent Ce(4-x)+. Charge ordering produces a doubling of the unit cell alo ng the c-axis with respect to the basic monoclinic CeCoAl type structure. Below room temperature, a phase transition with very broad hysteresis has been observed in various bulk properties like electrical resistivity, magnetic susceptibility, and specific heat. The present x-ray diffraction results show that at low temperatures the doubling of the CeCoAl type structure is replaced by an ill-defined modulated ground state. In this state, at least three different modulation periods compete, with the dominant mode close to a tripling of the basic cell. The transition is accompanied by a significant contraction of the c axis. XANES data suggest that the average Ce valence remains constant, thus the observed c axis contraction is not due to any valence transition. We propose a qualitative structure model with modified stacking sequences of Ce3+ and Ce(4-x)+ layers in the various modulated phases. Surprisingly, far below 100 K the modulated state is sensitive to x-ray irradiation at photon fluxes available at a synchrotron. With photon fluxes of order 10E12/s, the modulated ground state can be destroyed on a timescale of minutes and the doubling of the CeCoAl cell observed at room temperature is recovered. The final state is metastable at 10 K. Heating the sample above 60 K again leads to a recovery of the modulated state. Thus, CeRuSn exhibits both thermally and x-ray induced reversible transformations of the Ce3+/Ce(4-x)+ charge ordering pattern. Such a behavior is unique among any know intermetallic compound.
Charge order has recently been identified as a leading competitor of high-temperature superconductivity in moderately doped cuprates. We provide a survey of universal and materials-specific aspects of this phenomenon, with emphasis on results obtaine d by scattering methods. In particular, we discuss the structure, periodicity, and stability range of the charge-ordered state, its response to various external perturbations, the influence of disorder, the coexistence and competition with superconductivity, as well as collective charge dynamics. In the context of this journal issue which honors Roger Cowleys legacy, we also discuss the connection of charge ordering with lattice vibrations and the central-peak phenomenon. We end the review with an outlook on research opportunities offered by new synthesis methods and experimental platforms, including cuprate thin films and superlattices.
104 - W. E. Pickett , Y. Quan , V. Pardo 2013
To gain insight into the mechanism of charge-ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2M$^{n+}$ $rightarrow$ M$^{(n+1)+}$ + M$^{(n-1)+}$, we (1) review and reconsider the charge state (or oxidatio n number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO$_2$ and the dual charge state insulator AgO, and (3) analyze cationic occupations of actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, hence no charge transfer), and that the experimental data used to support charge ordering can be accounted for within density functional based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least inn many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا