ﻻ يوجد ملخص باللغة العربية
To gain insight into the mechanism of charge-ordering transitions, which conventionally are pictured as a disproportionation of an ion M as 2M$^{n+}$ $rightarrow$ M$^{(n+1)+}$ + M$^{(n-1)+}$, we (1) review and reconsider the charge state (or oxidation number) picture itself, (2) introduce new results for the putative charge ordering compound AgNiO$_2$ and the dual charge state insulator AgO, and (3) analyze cationic occupations of actual (not formal) charge, and work to reconcile the conundrums that arise. We establish that several of the clearest cases of charge ordering transitions involve no disproportion (no charge transfer between the cations, hence no charge transfer), and that the experimental data used to support charge ordering can be accounted for within density functional based calculations that contain no charge transfer between cations. We propose that the charge state picture retains meaning and importance, at least inn many cases, if one focuses on Wannier functions rather than atomic orbitals. The challenge of modeling charge ordering transitions with model Hamiltonians is discussed.
Charge ordering behavior is observed in the crystal prepared through the immersion of the $Na_{0.41}CoO_2$ crystal in distilled water. Discovery of the charge ordering in the crystal with Na content less than 0.5 indicates that the immersion in water
Here we report on the dynamics of the structural order parameter in a chromium film using synchrotron radiation in response to photo-induced ultra-fast excitations. Following transient optical excitations the effective lattice temperature of the film
At ambient temperatures, CeRuSn exhibits an extraordinary structure with a coexistence of two types of Ce ions in a metallic environment, namely trivalent Ce3+ and intermediate valent Ce(4-x)+. Charge ordering produces a doubling of the unit cell alo
We report a study of the 16.5 GHz dielectric function of hydrogenated and deuterated organic salts (TMTTF)$_2$PF$_6$. The temperature behavior of the dielectric function is consistent with short-range polar order whose relaxation time decreases rapid
Using first principle band structure calculations, we critically examine results of resonant x-ray scattering experiments which is believed to directly probe charge and orbital ordering. Considering the specific case of La0.5Sr1.5MnO4, we show that t