ترغب بنشر مسار تعليمي؟ اضغط هنا

Manifestation of unexpected semiconducting properties in few-layer orthorhombic arsenene

43   0   0.0 ( 0 )
 نشر من قبل Zhiya Zhang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this express, we demonstrate few-layer orthorhombic arsenene is an ideal semiconductor. Due to the layer stacking, multilayer arsenenes always behave as intrinsic direct bandgap semiconductors with gap values of around 1 eV. In addition, these bandgaps can be further tuned in its nanoribbons. Based on the so-called acoustic phonon limited approach, the carrier mobilities are predicted to approach as high as several thousand square centimeters per volt-second and simultaneously exhibit high directional anisotropy. All these make few-layer arsenene promising for device applications in semiconducting industry.

قيم البحث

اقرأ أيضاً

Few-layer InSe draws tremendous research interests owing to the superior electronic and optical properties. It exhibits high carrier mobility up to more than 1000 cm2/Vs at room temperature. The strongly layer-tunable band gap spans a large spectral range from near-infrared to the visible. In this perspective, we systematically review the optical properties of few-layer InSe. Firstly, the intrinsic optical and electronic properties are introduced. Compared to other two-dimensional (2D) materials, the light-matter interaction of few-layer InSe is unusual. The band gap transition is inactive or extremely weak for in-plane polarized light, and the emission light is mainly polarized along the out-of-plane direction. Secondly, we will present several schemes to tune the optical properties of few-layer InSe such as external strain, surface chemical doping and van der Waals (vdW) interfacing. Thirdly, we survey the applications of few-layer InSe in photodetection and heterostructures. Overall, few-layer InSe exhibits great potential not only in fundamental research, but also in electronic and optoelectronic applications.
Since the discovery of graphene -a single layer of carbon atoms arranged in a honeycomb lattice - it was clear that this truly is a unique material system with an unprecedented combination of physical properties. Graphene is the thinnest membrane pre sent in nature -just one atom thick- it is the strongest material, it is transparent and it is a very good conductor with room temperature charge mobilities larger than the typical mobilities found in silicon. The significance played by this new material system is even more apparent when considering that graphene is the thinnest member of a larger family: the few-layer graphene materials. Even though several physical properties are shared between graphene and its few-layers, recent theoretical and experimental advances demonstrate that each specific thickness of few-layer graphene is a material with unique physical properties.
Two-dimensional transition metal dichalcogenides (TMDs) have been attracting significant interest due to a range of properties, such as layer-dependent inversion symmetry, valley-contrasted Berry curvatures, and strong spin-orbit coupling (SOC). Of p articular interest is niobium diselenide (NbSe2), whose superconducting state in few-layer samples is profoundly affected by an unusual type of SOC called Ising SOC. Combined with the reduced dimensionality, the latter stabilizes the superconducting state against magnetic fields up to ~35 T and could lead to other exotic properties such as nodal and crystalline topological superconductivity. Here, we report transport measurements of few-layer NbSe$_2$ under in-plane external magnetic fields, revealing an unexpected two-fold rotational symmetry of the superconducting state. In contrast to the three-fold symmetry of the lattice, we observe that the magnetoresistance and critical field exhibit a two-fold oscillation with respect to an applied in-plane magnetic field. We find similar two-fold oscillations deep inside the superconducting state in differential conductance measurements on NbSe$_2$/CrBr$_3$ superconductor-magnet junctions. In both cases, the anisotropy vanishes in the normal state, demonstrating that it is an intrinsic property of the superconducting phase. We attribute the behavior to the mixing between two closely competing pairing instabilities, namely, the conventional s-wave instability typical of bulk NbSe$_2$ and an unconventional d- or p-wave channel that emerges in few-layer NbSe2. Our results thus demonstrate the unconventional character of the pairing interaction in a few-layer TMD, opening a new avenue to search for exotic superconductivity in this family of 2D materials.
A parameterized tight-binding (TB) model based on the first-principles GW calculations is developed for single layer tin diselenide (SnSe$_2$) and used to study its electronic and optical properties under external magnetic field. The truncated model is derived from six maximally localized wannier orbitals on Se site, which accurately describes the quasi-particle electronic states of single layer SnSe$_2$ in a wide energy range. The quasi-particle electronic states are dominated by the hoppings between nearest wannier orbitals ($t_1$-$t_6$). Our numerical calculation shows that, due to the electron-hole asymmetry, two sets of Landau Level spectrum are obtained when a perpendicular magnetic field is applied. The Landau Level spectrum follows linear dependence on the level index and magnetic field, exhibiting properties of two-dimensional electron gas in traditional semiconductors. The optical conductivity calculation shows that the optical gap is very close to the GW value, and can be tuned by external magnetic field. Our proposed TB model can be used for further exploring the electronic, optical, and transport properties of SnSe$_2$, especially in the presence of external magnetic fields.
We induce surface carrier densities up to $sim7cdot 10^{14}$cm$^{-2}$ in few-layer graphene devices by electric double layer gating with a polymeric electrolyte. In 3-, 4- and 5-layer graphene below 20-30K we observe a logarithmic upturn of resistanc e that we attribute to weak localization in the diffusive regime. By studying this effect as a function of carrier density and with ab-initio calculations we derive the dependence of transport, intervalley and phase coherence scattering lifetimes on total carrier density. We find that electron-electron scattering in the Nyquist regime is the main source of dephasing at temperatures lower than 30K in the $sim10^{13}$cm$^{-2}$ to $sim7 cdot 10^{14}$cm$^{-2}$ range of carrier densities. With the increase of gate voltage, transport elastic scattering is dominated by the competing effects due to the increase in both carrier density and charged scattering centers at the surface. We also tune our devices into a crossover regime between weak and strong localization, indicating that simultaneous tunability of both carrier and defect density at the surface of electric double layer gated materials is possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا