ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing a spin-glass state in SrRuO3 thin films through higher-order statistics of resistance fluctuations

48   0   0.0 ( 0 )
 نشر من قبل Gopi Nath Daptary
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The complex perovskite oxide SrRuO3 shows intriguing transport properties at low temperatures due to the interplay of spin, charge, and orbital degrees of freedom. One of the open questions in this system is regarding the origin and nature of the low-temperature glassy state. In this paper we report on measurements of higher-order statistics of resistance fluctuations performed in epitaxial thin films of SrRuO3 to probe this issue. We observe large low-frequency non-Gaussian resistance fluctuations over a certain temperature range. Our observations are compatible with that of a spin-glass system with properties described by hierarchical dynamics rather than with that of a simple ferromagnet with a large coercivity.

قيم البحث

اقرأ أيضاً

We report the observation of spin-glass-like behavior and strong magnetic anisotropy in extremely smooth (~1-3 AA) roughness) epitaxial (110) and (010) SrRuO3 thin films. The easy axis of magnetization is always perpendicular to the plane of the film (unidirectional) irrespective of crystallographic orientation. An attempt has been made to understand the nature and origin of spin-glass behavior, which fits well with Heisenberg model.
We report magneto-transport studies of topological insulator Bi_{2}Te_{3} thin films grown by pulsed laser deposition. A non-saturating linear-like magneto-resistance (MR) is observed at low temperatures in the magnetic field range from a few Tesla u p to 60 Tesla. We demonstrate that the strong linear-like MR at high field can be well understood as the weak antilocalization phenomena described by Hikami-Larkin-Nagaoka theory. Our analysis suggests that in our system, a topological insulator, the elastic scattering time can be longer than the spin-orbit scattering time. We briefly discuss our results in the context of Dirac Fermion physics and quantum linear magnetoresistance.
Superlattices may play an important role in next generation electronic and spintronic devices if the key-challenge of the reading and writing data can be solved. This challenge emerges from the coupling of low dimensional individual layers with macro scopic world. Here we report the study of the resistive switching characteristics of a of hybrid structure made out of a superlattice with ultrathin layers of two ferromagnetic metallic oxides, La0.7Sr0.3MnO3 (LSMO) and SrRuO3 (SRO). Bipolar resistive switching memory effects are measured on these LSMO/SRO superlattices, and the observed switching is explainable by ohmic and space charge-limited conduction laws. It is evident from the endurance characteristics that the on/off memory window of the cell is greater than 14, which indicates that this cell can reliably distinguish the stored information between high and low resistance states. The findings may pave a way to the construction of devices based on nonvolatile resistive memory effects.
93 - Y. Niimi , M. Kimata , Y. Omori 2015
We have measured spin Hall effects in spin glass metals, CuMnBi alloys, with the spin absorption method in the lateral spin valve structure. Far above the spin glass temperature Tg where the magnetic moments of Mn impurities are randomly frozen, the spin Hall angle of CuMnBi ternary alloy is as large as that of CuBi binary alloy. Surprisingly, however, it starts to decrease at about 4Tg and becomes as little as 7 times smaller at 0.5Tg. A similar tendency was also observed in anomalous Hall effects in the ternary alloys. We propose an explanation in terms of a simple model considering the relative dynamics between the localized moment and the conduction electron spin.
We propose theoretically a reconfigurable two-dimensional (2D) hexagonal sonic crystal with higher-order topology protected by the six-fold, $C_6$, rotation symmetry. The acoustic band gap and band topology can be controlled by rotating the triangula r scatterers in each unit-cell. In the nontrivial phase, the sonic crystal realizes the topological spin Hall effect in a higher-order fashion: (i) The edge states emerging in the bulk band gap exhibits partial spin-momentum locking and are gapped due to the reduced spatial symmetry at the edges. (ii) The gapped edge states, on the other hand, stabilize the topological corner states emerging in the edge band gap. The partial spin-momentum locking is manifested as pseudo-spin-polarization of edge states away from the time-reversal invariant momenta, where the pseudospin is emulated by the acoustic orbital angular momentum. We reveal the underlying topological mechanism using a corner topological index based on the symmetry representation of the acoustic Bloch bands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا