ﻻ يوجد ملخص باللغة العربية
We propose theoretically a reconfigurable two-dimensional (2D) hexagonal sonic crystal with higher-order topology protected by the six-fold, $C_6$, rotation symmetry. The acoustic band gap and band topology can be controlled by rotating the triangular scatterers in each unit-cell. In the nontrivial phase, the sonic crystal realizes the topological spin Hall effect in a higher-order fashion: (i) The edge states emerging in the bulk band gap exhibits partial spin-momentum locking and are gapped due to the reduced spatial symmetry at the edges. (ii) The gapped edge states, on the other hand, stabilize the topological corner states emerging in the edge band gap. The partial spin-momentum locking is manifested as pseudo-spin-polarization of edge states away from the time-reversal invariant momenta, where the pseudospin is emulated by the acoustic orbital angular momentum. We reveal the underlying topological mechanism using a corner topological index based on the symmetry representation of the acoustic Bloch bands.
Three-dimensional topological (crystalline) insulators are materials with an insulating bulk, but conducting surface states which are topologically protected by time-reversal (or spatial) symmetries. Here, we extend the notion of three-dimensional to
Conventional topological insulators support boundary states that have one dimension lower than the bulk system that hosts them, and these states are topologically protected due to quantized bulk dipole moments. Recently, higher-order topological insu
Nonzero weak topological indices are thought to be a necessary condition to bind a single helical mode to lattice dislocations. In this work we show that higher-order topological insulators (HOTIs) can, in fact, host a single helical mode along screw
A prominent feature of topological insulators (TIs) is the surface states comprising of spin-nondegenerate massless Dirac fermions. Recent technical advances have made it possible to address the surface transport properties of TI thin films while tun
Band topology and related spin (or pseudo-spin) physics of photons provide us with a new dimension for manipulating light, which is potentially useful for information communication and data storage. Especially, the quantum spin Hall effect of light,