ﻻ يوجد ملخص باللغة العربية
For Sn$_2$P$_2$S$_6$ ferroelectrics the second order phase transitions line is observed until reaching the tricritical point at transition temperature lowering to 250 K by compression. Observed temperature-pressure phase diagram agrees with simulated diagram by MC calculations based on early founded by DFT study local potential for Sn$_2$P$_2$S$_6$ crystals. In addition to the tricritical point, the possibility of disordered and quadrupolar phases occurrence was shown. For mixed crystals with tin by lead substitution, the investigated ultrasound, hypersound and low frequency dielectric properties also reveal appearance of heterophase peculiarities at decreasing of ferroelectric transition temperature below so named temperature waterline near 250~K. The tricriticality at similar temperature level also appears in mixed crystals at sulfur by selenium substitution. Such behavior agree with Blume-Emery-Griffiths (BEG) model, that is appropriated for investigated ferroelectric system with three-well local potential for the order parameter (spontaneous polarization) fluctuations.
The valence fluctuations which are related to the charge disproportionation of phosphorous ions $P^{4+} + P^{4+}rightarrow P^{3+} + P^{5+}$ are the origin of ferroelectric and quantum paraelectric states in Sn(Pb)$_2$P$_2$S$_6$ semiconductors. They i
The dipole ordering in Sn(Pb)$_2$P$_2$S(Se)$_6$ materials may be tuned by chemical substitution realizing a ferroelectric quantum phase transition and quantum glassy or relaxor type phenomena on different parts of the phase diagram. The introduction
Magnetoresistance (MR) of the Bi$_{2-x}$Pb$_x$Sr$_2$Co$_2$O$_y$ ($x$=0, 0.3, 0.4) single crystals is investigated systematically. A nonmonotonic variation of the isothermal in-plane and out-of-plane MR with the field is observed. The out-of-plane MR
Layered multi-ferroic materials exhibit a variety of functional properties that can be tuned by varying the temperature and pressure. As-synthesized CuInP$_2$S$_6$ is a layered material that displays ferrielectric behavior at room temperature. When s
We report an optimized chemical vapor transport method to grow single crystals of (Mn$_{1-x}$Ni$_x$)$_2$P$_2$S$_6$ where x = 0, 0.3, 0.5, 0.7 & 1. Single crystals up to 4,mm,$times$,3,mm,$times$,200,$mu$m were obtained by this method. As-grown crysta