ﻻ يوجد ملخص باللغة العربية
The origin of accelerating expansion of the Universe is one the biggest conundrum of fundamental physics. In this paper we review vacuum energy issues as the origin of accelerating expansion - generally called dark energy - and give an overview of alternatives, which a large number of them can be classified as interacting scalar field models. We review properties of these models both as classical field and as quantum condensates in the framework of non-equilibrium quantum field theory. Finally, we review phenomenology of models with the goal of discriminating between them.
We describe a new class of dark energy (DE) models which behave like cosmological trackers at early times. These models are based on the $alpha$-attractor set of potentials, originally discussed in the context of inflation. The new models allow the c
The thermal history of a large class of running vacuum models in which the effective cosmological term is described by a truncated power series of the Hubble rate, whose dominant term is $Lambda (H) propto H^{n+2}$, is discussed in detail. Specifical
We consider cosmological models with a dynamical dark energy field, and study the presence of three types of commonly found instabilities, namely ghost (when fields have negative kinetic energy), gradient (negative momentum squared) and tachyon (nega
Recently, Kallosh and Linde have drawn attention to a new family of superconformal inflationary potentials, subsequently called $alpha$-attractors. The $alpha$-attractor family can interpolate between a large class of inflationary models. It also has
Studying the effects of dark energy and modified gravity on cosmological scales has led to a great number of physical models being developed. The effective field theory (EFT) of cosmic acceleration allows an efficient exploration of this large model