ﻻ يوجد ملخص باللغة العربية
Studying the effects of dark energy and modified gravity on cosmological scales has led to a great number of physical models being developed. The effective field theory (EFT) of cosmic acceleration allows an efficient exploration of this large model space, usually carried out on a phenomenological basis. However, constraints on such parametrized EFT coefficients cannot be trivially connected to fundamental covariant theories. In this paper we reconstruct the class of covariant Horndeski scalar-tensor theories that reproduce the same background dynamics and linear perturbations as a given EFT action. One can use this reconstruction to interpret constraints on parametrized EFT coefficients in terms of viable covariant Horndeski theories. We demonstrate this method with a number of well-known models and discuss a range of future applications.
The effective field theory (EFT) of cosmological perturbations is a useful framework to deal with the low-energy degrees of freedom present for inflation and dark energy. We review the EFT for modified gravitational theories by starting from the most
We investigate the structure formation in the effective field theory of the holographic dark energy. The equation of motion for the energy contrast $delta_m$ of the cold dark matter is the same as the one in the general relativity up to the leading o
We summarise the effective field theory of dark energy construction to explore observable predictions of linear Horndeski theories. Based on cite{Perenon:2016blf}, we review the diagnostic of these theories on the correlation of the large-scale struc
In light of the cosmological observations, we investigate dark energy models from the Horndeski theory of gravity. In particular, we consider cosmological models with the derivative self-interaction of the scalar field and the derivative coupling bet
We analyze the polarization content of gravitational waves in Horndeski theory. Besides the familiar plus and cross polarizations in Einsteins General Relativity, there is one more polarization state which is the mixture of the transverse breathing a